1
|
Epidemiological, Clinical, and Genomic Profile in Head and Neck Cancer Patients and Their Families. Biomedicines 2022; 10:biomedicines10123278. [PMID: 36552033 PMCID: PMC9775590 DOI: 10.3390/biomedicines10123278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Inherited cancer predisposition genes are described as risk factors in head and neck cancer (HNC) families. To explore the clinical and epidemiological data and their association with a family history of cancer, we recruited 74 patients and 164 relatives affected by cancer. The germline copy number alterations were evaluated in 18 patients using array comparative genomic hybridization. Two or more first-degree relatives with HNC, tobacco-associated tumor sites (lung, esophagus, and pancreas), or other related tumors (breast, colon, kidney, bladder, cervix, stomach carcinomas, and melanoma) were reported in 74 families. Ten index patients had no exposure to any known risk factors. Family members presented tumors of 19 topographies (30 head and neck, 26 breast, 21 colon). In first-degree relatives, siblings were frequently affected by cancer (n = 58, 13 had HNC). Breast cancer (n = 21), HNC (n = 19), and uterine carcinoma (n = 15) were commonly found in first-degree relatives and HNC in second-degree relatives (n = 11). Nineteen germline genomic imbalances were detected in 13 patients; three presented gains of WRD genes. The number of HNC patients, the degree of kinship, and the tumor types detected in each relative support the role of heredity in these families. Germline alterations may potentially contribute to cancer development.
Collapse
|
2
|
Zuo J, Liu C, Ni H, Yu Z. WDR34 affects PI3K/Akt and Wnt/β-catenin pathways to regulates malignant biological behaviors of glioma cells. J Neurooncol 2022; 156:281-293. [PMID: 34981299 DOI: 10.1007/s11060-021-03932-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Glioma is the most prevalent primary intracranial tumor globally. WDR34, a member of the WDR superfamily with five WD40 repeats, is involved in the pathogenesis of several tumors. However, the role of WDR34 in glioma progression is unknown. METHODS The expression and prognostic significance of WDR34 in glioma patients were analyzed using GEPIA. WDR34 expression was detected by qRT-PCR. Western blot was employed to determine the expression of Ki67, proliferating cell nuclear antigen (PCNA), matrix metallopeptidase (MMP)2, MMP9, phosphatase and tensin homolog, protein kinase B (Akt), phosphorylated Akt, β-catenin, and c-Myc. CCK-8, BrdU incorporation assay, Transwell invasion assay, flow cytometry analysis, and measurement of caspase-3 and caspase-9 activities were conducted to examine the effects of WDR34 knockdown on glioma cells. RESULTS WDR34 was upregulated in glioma, which predicted a poor prognosis in glioma patients. WDR34 knockdown inhibited cell proliferation and reduced the expression of Ki67 and PCNA in glioma cells. WDR34 knockdown repressed the invasive ability of glioma cells by decreasing MMP-2 and MMP-9 expression. WDR34 knockdown increased the apoptotic rate and caspase-3 and caspase-9 activities in glioma cells. The PI3K/Akt and Wnt/β-catenin pathways were inhibited after WDR34 knockdown in glioma cells. Moreover, overexpression of Akt or β-catenin reversed the function of WDR34 knockdown on proliferation, invasion, and apoptosis. WDR34 knockdown reduced tumor growth in vivo. CONCLUSIONS WDR34 knockdown inhibited malignant biological behaviors of glioma cells by inactivating the PI3K/Akt and Wnt/β-catenin signaling cascades.
Collapse
Affiliation(s)
- Jiandong Zuo
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Chun Liu
- Department of Neurosurgery, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huai'an, 210009, People's Republic of China
| | - Hongzao Ni
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an Second People's Hospital, Huai'an, 223002, People's Republic of China
| | - Zhengquan Yu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China.
| |
Collapse
|
3
|
Saito T, Terajima M, Taga Y, Hayashi F, Oshima S, Kasamatsu A, Okubo Y, Ito C, Toshimori K, Sunohara M, Tanzawa H, Uzawa K, Yamauchi M. Decrease of lysyl hydroxylase 2 activity causes abnormal collagen molecular phenotypes, defective mineralization and compromised mechanical properties of bone. Bone 2022; 154:116242. [PMID: 34718219 DOI: 10.1016/j.bone.2021.116242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 12/22/2022]
Abstract
Lysyl hydroxylase 2 (LH2) is an enzyme that catalyzes the hydroxylation of lysine (Lys) residues in fibrillar collagen telopeptides, a critical post-translational modification for the stability of intermolecular cross-links. Though abnormal LH2 activities have been implicated in various diseases including Bruck syndrome, the molecular basis of the pathologies is still not well understood. Since LH2 null mice die at early embryonic stage, we generated LH2 heterozygous (LH2+/-) mice in which LH2 level is significantly diminished, and characterized collagen and bone phenotypes using femurs. Compared to the wild-type (WT), LH2+/- collagen showed a significant decrease in the ratio of hydroxylysine (Hyl)- to the Lys-aldehyde-derived collagen cross-links without affecting the total number of aldehydes involved in cross-links. Mass spectrometric analysis revealed that, in LH2+/- type I collagen, the extent of hydroxylation of all telopeptidyl Lys residues was significantly decreased. In the helical domain, Lys hydroxylation at the cross-linking sites was either unaffected or slightly lower, but other sites were significantly diminished compared to WT. In LH2+/- femurs, mineral densities of cortical and cancellous bones were significantly decreased and the mechanical properties of cortical bones evaluated by nanoindentation analysis were compromised. When cultured, LH2+/- osteoblasts poorly produced mineralized nodules compared to WT osteoblasts. These data provide insight into the functionality of LH2 in collagen molecular phenotype and its critical role in bone matrix mineralization and mechanical properties.
Collapse
Affiliation(s)
- Tomoaki Saito
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahiko Terajima
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Ibaraki 302-0017, Japan
| | - Fumihiko Hayashi
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sachi Oshima
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Yasuhiko Okubo
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Chizuru Ito
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyotaka Toshimori
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan; Future Medicine Research Center, Chiba University, Chiba, Japan
| | - Masataka Sunohara
- Department of Anatomy, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan.
| | - Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Liu X, Wu Y, Zhang Y, Bu D, Wu C, Lu S, Huang Z, Song Y, Zhao Y, Guo F, Ye P, Fu C, Shen L, Zhang J, Wang H, Duan X, Wu J. High Throughput Transcriptome Data Analysis and Computational Verification Reveal Immunotherapy Biomarkers of Compound Kushen Injection for Treating Triple-Negative Breast Cancer. Front Oncol 2021; 11:747300. [PMID: 34604090 PMCID: PMC8484800 DOI: 10.3389/fonc.2021.747300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022] Open
Abstract
Background Although notable therapeutic and prognostic benefits of compound kushen injection (CKI) have been found when it was used alone or in combination with chemotherapy or radiotherapy for triple-negative breast cancer (TNBC) treatment, the effects of CKI on TNBC microenvironment remain largely unclear. This study aims to construct and validate a predictive immunotherapy signature of CKI on TNBC. Methods The UPLC-Q-TOF-MS technology was firstly used to investigate major constituents of CKI. RNA sequencing data of CKI-perturbed TNBC cells were analyzed to detect differential expression genes (DEGs), and the GSVA algorithm was applied to explore significantly changed pathways regulated by CKI. Additionally, the ssGSEA algorithm was used to quantify immune cell abundance in TNBC patients, and these patients were classified into distinct immune infiltration subgroups by unsupervised clustering. Then, prognosis-related genes were screened from DEGs among these subgroups and were further overlapped with the DEGs regulated by CKI. Finally, a predictive immunotherapy signature of CKI on TNBC was constructed based on the LASSO regression algorithm to predict mortality risks of TNBC patients, and the signature was also validated in another TNBC cohort. Results Twenty-three chemical components in CKI were identified by UPLC-Q-TOF-MS analysis. A total of 3692 DEGs were detected in CKI-treated versus control groups, and CKI significantly activated biological processes associated with activation of T, natural killer and natural killer T cells. Three immune cell infiltration subgroups with 1593 DEGs were identified in TNBC patients. Then, two genes that can be down-regulated by CKI with hazard ratio (HR) > 1 and 26 genes that can be up-regulated by CKI with HR < 1 were selected as key immune- and prognosis-related genes regulated by CKI. Lastly, a five-gene prognostic signature comprising two risky genes (MARVELD2 and DYNC2I2) that can be down-regulated by CKI and three protective genes (RASSF2, FERMT3 and RASSF5) that can be up-regulated by CKI was developed, and it showed a good performance in both training and test sets. Conclusions This study proposes a predictive immunotherapy signature of CKI on TNBC, which would provide more evidence for survival prediction and treatment guidance in TNBC as well as a paradigm for exploring immunotherapy biomarkers in compound medicines.
Collapse
Affiliation(s)
- Xinkui Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Wu
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Yingying Zhang
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The People's Liberation Army (PLA) Rocket Force Characteristic Medical Center, Beijing, China
| | - Dechao Bu
- Pervasive Computing Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Chao Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Shan Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Zhihong Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Yurong Song
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fengying Guo
- School of Management, Beijing University of Chinese Medicine, Beijing, China
| | - Peizhi Ye
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changgeng Fu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liangliang Shen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Jingyuan Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Haojia Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Xianchun Duan
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jiarui Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
A novel DNA methylation-based model that effectively predicts prognosis in hepatocellular carcinoma. Biosci Rep 2021; 41:227938. [PMID: 33634306 PMCID: PMC7955104 DOI: 10.1042/bsr20203945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To build a novel predictive model for hepatocellular carcinoma (HCC) patients based on DNA methylation data. METHODS Four independent DNA methylation datasets for HCC were used to screen for common differentially methylated genes (CDMGs). Gene Ontology (GO) enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to explore the biological roles of CDMGs in HCC. Univariate Cox analysis and least absolute shrinkage and selection operator (LASSO) Cox analysis were performed to identify survival-related CDMGs (SR-CDMGs) and to build a predictive model. The importance of this model was assessed using Cox regression analysis, propensity score-matched (PSM) analysis and stratification analysis. A validation group from the Cancer Genome Atlas (TCGA) was constructed to further validate the model. RESULTS Four SR-CDMGs were identified and used to build the predictive model. The risk score of this model was calculated as follows: risk score = (0.01489826 × methylation level of WDR69) + (0.15868618 × methylation level of HOXB4) + (0.16674959 × methylation level of CDKL2) + (0.16689301 × methylation level of HOXA10). Kaplan-Meier analysis demonstrated that patients in the low-risk group had a significantly longer overall survival (OS; log-rank P-value =0.00071). The Cox model multivariate analysis and PSM analysis identified the risk score as an independent prognostic factor (P<0.05). Stratified analysis results further confirmed this model performed well. By analyzing the validation group, the results of receiver operating characteristic (ROC) curve analysis and survival analysis further validated this model. CONCLUSION Our DNA methylation-based prognosis predictive model is effective and reliable in predicting prognosis for patients with HCC.
Collapse
|
6
|
Wang Y, Shang S, Yu K, Sun H, Ma W, Zhao W. miR-224, miR-147b and miR-31 associated with lymph node metastasis and prognosis for lung adenocarcinoma by regulating PRPF4B, WDR82 or NR3C2. PeerJ 2020; 8:e9704. [PMID: 33282547 PMCID: PMC7694553 DOI: 10.7717/peerj.9704] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
Background The present study is to screen lymph node metastasis-related microRNAs (miRNAs) in lung adenocarcinoma (LUAD) and uncover their underlying mechanisms. Methods The miRNA microarray dataset was collected from the Gene Expression Omnibus database under accession number GSE64859. The differentially expressed miRNAs (DEMs) were identified using a t-test. Target genes of DEMs were predicted through the miRWalk2.0 database. The function of these target genes was annotated with the clusterProfiler and the Database for Annotation, Visualization and Integrated Discovery (DAVID) tools. Protein-protein interaction network was established using the STRING database to extract hub target genes. The expressions and associations with survival and lymph node metastasis of miRNAs and target genes were validated by analysis of The Cancer Genome Atlas (TCGA) dataset. Results Eight DEMs were identified between lymph node metastasis and non-metastasis samples of GSE64859 dataset. miRNA-target gene pairs were predicted between six DEMs and 251 target genes (i.e. hsa-miR-224-PRPF4B, hsa-miR-147b-WDR82 and hsa-miR-31-NR3C2). The clusterProfiler analysis showed WDR82 was involved in the mRNA surveillance pathway, while the GO enrichment analysis using the DAVID database indicated PRPF4B participated in the protein phosphorylation and NR3C2 was related with the transcription, DNA-templated. WDR82 and PRPF4B may be hub genes because they could interact with others. Two DEMs (miR-31-5p and miR-31-3p) and 45 target genes (including PRPF4B and NR3C2) were significantly associated with overall survival. The expressions of miR-224 and miR-147b were validated to be upregulated, while WDR82, PRPF4B and NR3C2 were downregulated in lymph node metastasis samples of TCGA datasets compared with non-metastasis samples. Also, there were significantly negative expression correlations between miR-147b and WDR82, between miR-224 and PRPF4B, as well as between miR-31 and NR3C2 in LUAD samples. Conclusions The present study identified several crucial miRNA-mRNA interaction pairs, which may provide novel explanations for the lymph node metastasis and poor prognosis for LUAD patients.
Collapse
Affiliation(s)
- Yan Wang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Jilin, China
| | - Shengtao Shang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Jilin, China
| | - Kun Yu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Jilin, China
| | - Hongbin Sun
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Jilin, China
| | - Wenduan Ma
- Department of Thoracic Surgery, Baicheng Hospital of Traditional Chinese Medicine, Jilin, China
| | - Wei Zhao
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Jilin, China
| |
Collapse
|
7
|
Hu DJ, Shi WJ, Yu M, Zhang L. High WDR34 mRNA expression as a potential prognostic biomarker in patients with breast cancer as determined by integrated bioinformatics analysis. Oncol Lett 2019; 18:3177-3187. [PMID: 31452794 PMCID: PMC6676453 DOI: 10.3892/ol.2019.10634] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 06/06/2019] [Indexed: 01/14/2023] Open
Abstract
The WD-repeat domain (WDR) family is distributed in the majority of eukaryotes and has several unique biological functions. It serves important roles in signal transduction, cytoskeleton assembly, protein transport, RNA processing, chromatin modification and transcription mechanisms. WD repeat domain 34 (WDR34) has been recently identified as a member of the WDR family. Overexpression of WDR34 was accompanied by the presence of multiple centrioles in the cell, suggesting that it was associated with tumor occurrence. However, its association with breast cancer was unclear. To the best of our knowledge, it has not yet been confirmed whether WDR34 gene expression is associated with breast cancer. Therefore, the current study attempted to clarify this by performing a comprehensive study using multiple datasets in the Oncomine, Breast Cancer Gene-Expression Miner and Kaplan-Meier Plotter databases. The analysis indicated that the mRNA expression levels of WDR34 were increased in breast cancer tissues compared with normal tissues. Consistent with this result, the Broad-Novartis Cancer Cell Line Encyclopedia revealed that WDR34 mRNA expression levels were upregulated in breast cancer cell lines compared with other cancer cells. It was noted that high WDR34 mRNA expression was associated with forkhead box M1 and PTTG1 regulator of sister chromatid separation, securing in co-expression analysis. Expression profile characteristics of WDR34 mRNA were identified in different molecular subtypes of breast cancer. Furthermore, survival analysis revealed that increased expression levels of WDR34 mRNA were associated with poor overall survival in patients with breast cancer, particularly in luminal B, lymph node status-positive and estrogen receptor (ER)-negative subgroups. Additionally, Kaplan-Meier curves revealed that high WDR34 mRNA expression was associated with shorter relapse-free survival in patients with breast cancer, particularly in ER-positive, human epidermal growth factor receptor 2-negative and progesterone receptor-positive subgroups. These results suggested that WDR34 may be used as a prognosis predictor in breast cancer and may provide a novel target for the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Dao-Jun Hu
- Department of Clinical Laboratory, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Chongming Branch), Shanghai 202150, P.R. China
| | - Wen-Jie Shi
- Department of Breast Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Miao Yu
- Department of Clinical Laboratory, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Chongming Branch), Shanghai 202150, P.R. China
| | - Li Zhang
- Department of Clinical Laboratory, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Chongming Branch), Shanghai 202150, P.R. China
| |
Collapse
|
8
|
Eizuka K, Nakashima D, Oka N, Wagai S, Takahara T, Saito T, Koike K, Kasamatsu A, Shiiba M, Tanzawa H, Uzawa K. SYT12 plays a critical role in oral cancer and may be a novel therapeutic target. J Cancer 2019; 10:4913-4920. [PMID: 31598163 PMCID: PMC6775516 DOI: 10.7150/jca.32582] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Synaptotagmin12 (SYT12) has been well characterized as the regulator of transmitter release in the nervous system, however the relevance and molecular mechanisms of SYT12 in oral squamous cell carcinoma (OSCC) are not understood. In the current study, we investigated the expression of SYT12 and its molecular biological functions in OSCC by quantitative reverse transcriptase polymerase chain reaction, immunoblot analysis, and immunohistochemistry. SYT12 were up-regulated significantly in OSCC-derived cell lines and primary OSCC tissue compared with the normal counterparts (P<0.05) and the SYT12 expression levels were correlated significantly with clinical indicators, such as the primary tumoral size, lymph node metastasis, and TNM stage (P<0.05). SYT12 knockdown OSCC cells showed depressed cellular proliferation, migration, and invasion with cell cycle arrest at G1 phase. Surprisingly, we found increased calcium/calmodulin-dependent protein kinase 2 (CAMK2) inhibitor 1 (CAMK2N1) and decreased CAMK2-phosphorylation in the knockdown cells. Furthermore, treatment with L-3, 4-dihydroxyphenylalanine (L-dopa), a drug approved for Parkinson's disease, led to down-regulation of SYT12 and similar phenotypes to SYT12 knockdown cells. Taken together, we concluded that SYT12 plays a significant role in OSCC progression via CAMK2N1 and CAMK2, and that L-dopa would be a new drug for OSCC treatment through the SYT12 expression.
Collapse
Affiliation(s)
- Keitaro Eizuka
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Dai Nakashima
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Noritoshi Oka
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sho Wagai
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshikazu Takahara
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Tomoaki Saito
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Kazuyuki Koike
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Masashi Shiiba
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
9
|
Uzawa K, Amelio AL, Kasamatsu A, Saito T, Kita A, Fukamachi M, Sawai Y, Toeda Y, Eizuka K, Hayashi F, Kato-Kase I, Sunohara M, Iyoda M, Koike K, Nakashima D, Ogawara K, Endo-Sakamoto Y, Shiiba M, Takiguchi Y, Yamauchi M, Tanzawa H. Resveratrol Targets Urokinase-Type Plasminogen Activator Receptor Expression to Overcome Cetuximab-Resistance in Oral Squamous Cell Carcinoma. Sci Rep 2019; 9:12179. [PMID: 31434965 PMCID: PMC6704133 DOI: 10.1038/s41598-019-48717-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/12/2019] [Indexed: 11/09/2022] Open
Abstract
Drug resistance to anti-cancer agents is a major concern regarding the successful treatment of malignant tumors. Recent studies have suggested that acquired resistance to anti-epidermal growth factor receptor (EGFR) therapies such as cetuximab are in part caused by genetic alterations in patients with oral squamous cell carcinoma (OSCC). However, the molecular mechanisms employed by other complementary pathways that govern resistance remain unclear. In the current study, we performed gene expression profiling combined with extensive molecular validation to explore alternative mechanisms driving cetuximab-resistance in OSCC cells. Among the genes identified, we discovered that a urokinase-type plasminogen activator receptor (uPAR)/integrin β1/Src/FAK signal circuit converges to regulate ERK1/2 phosphorylation and this pathway drives cetuximab-resistance in the absence of EGFR overexpression or acquired EGFR activating mutations. Notably, the polyphenolic phytoalexin resveratrol, inhibited uPAR expression and consequently the signaling molecules ERK1/2 downstream of EGFR thus revealing additive effects on promoting OSCC cetuximab-sensitivity in vitro and in vivo. The current findings indicate that uPAR expression plays a critical role in acquired cetuximab resistance of OSCC and that combination therapy with resveratrol may provide an attractive means for treating these patients.
Collapse
Affiliation(s)
- Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan. .,Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan.
| | - Antonio L Amelio
- Division of Oral and Craniofacial Health Sciences, UNC Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7455, USA. .,Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7455, USA. .,Biomedical Research Imaging Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7455, USA.
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Tomoaki Saito
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Akihiro Kita
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Megumi Fukamachi
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yuki Sawai
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yuriko Toeda
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Keitaro Eizuka
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Fumihiko Hayashi
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Ikuko Kato-Kase
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Masataka Sunohara
- Department of Anatomy, School of Life Dentistry at Tokyo, Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Manabu Iyoda
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Kazuyuki Koike
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Dai Nakashima
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Katsunori Ogawara
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yosuke Endo-Sakamoto
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Masashi Shiiba
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yuichi Takiguchi
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, UNC Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7455, USA
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.,Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| |
Collapse
|
10
|
Uzawa K, Kasamatsu A, Saito T, Kita A, Sawai Y, Toeda Y, Koike K, Nakashima D, Endo Y, Shiiba M, Takiguchi Y, Tanzawa H. Growth suppression of human oral cancer cells by candidate agents for cetuximab-side effects. Exp Cell Res 2019; 376:210-220. [DOI: 10.1016/j.yexcr.2019.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/15/2019] [Accepted: 01/24/2019] [Indexed: 02/02/2023]
|