1
|
Shi B, Sun R, Liu X, Xu Y, Jiang Y, Yan K, Chen Y. Cloning, phylogenetic and expression analysis of two MyoDs in yellowtail kingfish (Seriola lalandi). Gen Comp Endocrinol 2024; 347:114422. [PMID: 38092071 DOI: 10.1016/j.ygcen.2023.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/30/2023]
Abstract
Yellowtail kingfish (Seriola lalandi) is a pelagic piscivore distributed circumglobally. Owing to its great market value, the growth mechanism of S. lalandi, including muscle development and growth, is a hot research topic. The myoblast determination protein (MyoD) gene has been shown to play an important role in formation of myoblasts and the function of somites in fish. The open reading frame (ORF) sequences of MyoD1 and MyoD2 in S. lalandi encoded 298 and 263 amino acids possessing three common characteristic domains, respectively, containing a myogenic basic domain, a bHLH domain, and a ser-rich region (helix III). S. lalandi MyoDs shared the highest identity with the MyoDs of S. dumerili. MyoDs are highly expressed in white muscle (P < 0.05) in S. lalandi. The expression level of MyoD1 mRNA was higher than that of MyoD2 mRNA during embryonic and early developmental stages, indicating that the two MyoD isoforms may have different roles in muscle formation. Moreover, the mRNA expression of MyoDs in the brain, pituitary, liver and muscle of endocrine growth axis were analyzed in the various sizes and ages stages. The expression levels of MyoDs in the different sizes and ages of S. lalandi showed that expression of both these genes was particularly high in 400-g fish and 2-year-old fish (P < 0.05). Moreover, the increases in the mRNA expression and plasma levels of growth hormone (GH) and insulin-like growth factor (IGF-I) were accompanied by an increase in mRNA expression of MyoDs, indicating the roles of GH and IGF-I in muscle development and growth of S. lalandi. Overall, the expression profiles of genes associated with muscle development are the first step taken towards deciphering fast growth mechanism in this important Seriola fish.
Collapse
Affiliation(s)
- Bao Shi
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Ranran Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Xuezhou Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China.
| | - Yongjiang Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Yan Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Kewen Yan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Yan Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| |
Collapse
|
2
|
Zhang J, Raza SHA, Wei D, Yaping S, Chao J, Jin W, Almohaimeed HM, A Batarfi M, Assiri R, Aggad WS, Ghalib SH, Ageeli AA. Roles of MEF2A and MyoG in the transcriptional regulation of bovine LATS2 gene. Res Vet Sci 2022; 152:417-426. [PMID: 36126508 DOI: 10.1016/j.rvsc.2022.08.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/16/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
As an important downstream effector gene in the hippo signaling pathway, large tumor suppressor gene 2 (LATS2) is involved in cell proliferation and differentiation, organ size and tissue regeneration, and plays an important role in regulating the growth and development of animal muscles. The purpose of this study is to explore the temporal expression of bovine LATS2 gene, and determine the key transcription factors for regulating bovine LATS2 gene. The result showed that bovine LATS2 gene was highly expressed in liver and longissimus dorsi, and was up-regulated in infancy muscle. In addition, it was highly expressed on the 2th day during the differentiation stage of myoblast. The upstream 1.7 Kb sequence of the 5 'translation region of bovine LATS2 gene was cloned, and 7 different deletion fragments were amplified by the upstream primers. These fragments were constructed into double luciferase reporter vectors and transfected into myoblasts and myotubes cells, respectively to detect the core promoter regions. In addition, the key transcription factors of the core promoter sequence of the bovine LATS2 gene were analyzed and predicted by online software. Combining with site-directed mutations, siRNA interference and chromatin immunoprecipitation technology, it was identified that MEF2A and MyoG combined in core promoter region (-248/-56) to regulate the transcription activity of bovine LATS2 gene. The results have laid a theoretical foundation for exploring the molecular regulation mechanism of LATS2 gene in the process of muscle growth.
Collapse
Affiliation(s)
- Jiupan Zhang
- Institute of Animal Sciences, Ningxia Academy of agricultural and Forestry Sciences, Yinchuan 750021, China
| | | | - Dawei Wei
- School of Agriculture, Ningxia University, Yinchuan 750021, China.
| | - Song Yaping
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Jiang Chao
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Wang Jin
- Institute of Animal Sciences, Ningxia Academy of agricultural and Forestry Sciences, Yinchuan 750021, China
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Munirah A Batarfi
- Department of Anatomy, Basic medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Rasha Assiri
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Waheeb S Aggad
- Department of Anatomy, College of Medicine, University of Jeddah, P.O. Box 8304, Jeddah 23234, Saudi Arabia
| | - Samirah H Ghalib
- Chemistry department, Collage of Science (female section), Jazan University, Jazan 82621, Saudi Arabia
| | - Abeer A Ageeli
- Chemistry department, Collage of Science (female section), Jazan University, Jazan 82621, Saudi Arabia
| |
Collapse
|
3
|
Wei D, Raza SHA, Wang X, Khan R, Lei Z, Zhang G, Zhang J, Luoreng Z, Ma Y, Alamoudi MO, Aloufi BH, Alshammari AM, Abd El-Aziz AH, Alhomrani M, Alamri AS. Tissue Expression Analysis, Cloning, and Characterization of the 5'-Regulatory Region of the Bovine LATS1 Gene. Front Vet Sci 2022; 9:853819. [PMID: 35692290 PMCID: PMC9185948 DOI: 10.3389/fvets.2022.853819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
As a member of the large tumor suppressor (LATS) gene family, LATS1 plays an important role in regulating muscle growth and development. In this study, we determined the distinct exhibit patterns of tissue expression of bovine LATS1. Further, we determined the functional proximal minimal promoter of bovine LATS1 and identified the key transcription factors in the core promoter region to elucidate its molecular regulation mechanism. The results showed that bovine LATS1 was highly expressed in the longissimus thoracis and upregulation in infancy muscle. An electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay in combination with site-directed mutation and small interfering RNA (siRNA) interference demonstrated that myogenic differentiation 1 (Myod1) and myocyte enhancer factor 2A (MEF2A) binding in the core promoter region (−298/−123 bp) play important roles in the transcriptional regulation of the bovine LATS1 promoter. Taken together, these interactions provide insight into the regulatory mechanisms of LATS1 transcription in mediating skeletal muscle growth in cattle.
Collapse
Affiliation(s)
- Dawei Wei
- School of Agriculture, Ningxia University, Yinchuan, China.,Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | | | - Xingping Wang
- School of Agriculture, Ningxia University, Yinchuan, China.,Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Zhaoxiong Lei
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Guijie Zhang
- School of Agriculture, Ningxia University, Yinchuan, China.,Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jiupan Zhang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Zhuoma Luoreng
- School of Agriculture, Ningxia University, Yinchuan, China.,Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Yinchuan, China.,Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Muna O Alamoudi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Bandar Hamad Aloufi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | | | - Ayman Hassan Abd El-Aziz
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Majid Alhomrani
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.,Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.,Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| |
Collapse
|
4
|
Ge L, Yang J, Gong X, Kang J, Zhang Y, Liu X, Quan F. Bovine CAPN3 core promoter initiates expression of foreign genes in skeletal muscle cells by MyoD transcriptional regulation. Int J Biochem Cell Biol 2020; 127:105837. [PMID: 32827763 DOI: 10.1016/j.biocel.2020.105837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 11/18/2022]
Abstract
Activating foreign genes in bovine skeletal muscle is necessary in the study of the role of related genes in skeletal muscle development and the effects on skeletal muscle formation, especially in the study of transgenic cattle. At this time, a skeletal muscle-specific promoter should be selected to initiate a functional foreign gene. Here, calpain3 (CAPN3) was found to be highly expressed in skeletal muscle and skeletal muscle cells by real-time PCR. Next, 5' deletion analysis of the bovine CAPN3 promoter was performed and showed that Q5(-495/+40) region was the core promoter of the bovine CAPN3. A key regulatory site (-465/-453) in CAPN3 core promoter was associated with the transcription factor, MyoD, which is a skeletal muscle-specific transcription factor. Furthermore, the mRNA and protein expression levels of MyoD and CAPN3 were positively correlated during skeletal muscle cell differentiation. The overexpression of MyoD enhanced the activity of the bovine CAPN3 core promoter. The core promoter Q5(-495/+40) could drive the exogenous gene EGFP and the fat-specific expression gene PPARγ in skeletal muscle cells. In summary, our study obtained a bovine skeletal muscle-specific promoter and provided a basis for studying the role of functional genes in the growth and development of skeletal muscle. It also provides a basis for studying the transcriptional regulation mechanism of CAPN3.
Collapse
Affiliation(s)
- Luxing Ge
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiashu Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xutong Gong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jian Kang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
5
|
Zhu KC, Liu BS, Guo HY, Zhang N, Guo L, Jiang SG, Zhang DC. Functional analysis of two MyoDs revealed their role in the activation of myomixer expression in yellowfin seabream (Acanthopagrus latus) (Hottuyn, 1782). Int J Biol Macromol 2020; 156:1081-1090. [PMID: 31756488 DOI: 10.1016/j.ijbiomac.2019.11.139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/11/2019] [Accepted: 11/17/2019] [Indexed: 11/24/2022]
Abstract
Myoblast determination protein (MyoD), a muscle-specific basic helix-loop-helix (bHLH) transcription factor, plays a pivotal role in regulating skeletal muscle growth and development. However, the regulation mechanism of MyoD has not been determined in marine fishes. In the present study, we isolated the MyoD1 (AlMyoD1) and MyoD2 (AlMyoD2) genomic sequences and analyzed the expression patterns in different tissues of yellowfin seabream (Acanthopagrus latus). The open reading frame (ORF) sequences of AlMyoD1 and AlMyoD2 encoded 297 and 271 amino acids possessing three common characteristic domains, respectively, containing a myogenic basic domain, a bHLH domain, and a ser-rich region (helix III). Phylogenetic and genome structure analyses exhibited classic phylogeny and highly conserved exon/intron architecture. Furthermore, the AlMyoD1 and AlMyoD2 transcription levels were higher in white muscle than in the other tissues. In order to further study AlMyoD function in muscle, promoter sequence analysis found that several E-box binding sites were present. Additionally, binding sites of Almyomixer involved in mammal myoblast fusion, which expression was also the highest in white muscle, were found in the promoter of AlMyoD. Pomoter activity assays further confirmed that both AlMyoD1 and AlMyoD2 can dramatically activate Almyomixer expression, and the AlMyoD1 M2 and AlMyoD2 M5 E-box binding sites were functionally important for Almyomixer transcription based on mutation analysis and electrophoretic mobile shift assays (EMSA). In summary, two MyoDs play a core role in Almyomixer regulation and may promote myofibre formation during muscle development and growth by regulating Almyomixer expression.
Collapse
Affiliation(s)
- Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Liang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
6
|
Khan R, Raza SHA, Schreurs N, Xiaoyu W, Hongbao W, Ullah I, Rahman A, Suhail SM, Khan S, Linsen Z. Bioinformatics analysis and transcriptional regulation of TORC1 gene through transcription factors NRF1 and Smad3 in bovine preadipocytes. Genomics 2020; 112:1575-1587. [DOI: 10.1016/j.ygeno.2019.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/23/2019] [Accepted: 09/11/2019] [Indexed: 12/25/2022]
|