1
|
Zhang X, Zhao G, Yang F, Li C, Lin W, Dai H, Zhai L, Xi X, Yuan Q, Huo J. Transcriptional Regulation Analysis Provides Insight into the Function of GSK3β Gene in Diannan Small-Ear Pig Spermatogenesis. Genes (Basel) 2024; 15:655. [PMID: 38927591 PMCID: PMC11203124 DOI: 10.3390/genes15060655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Glycogen synthase kinase-3β (GSK3β) not only plays a crucial role in regulating sperm maturation but also is pivotal in orchestrating the acrosome reaction. Here, we integrated single-molecule long-read and short-read sequencing to comprehensively examine GSK3β expression patterns in adult Diannan small-ear pig (DSE) testes. We identified the most important transcript ENSSSCT00000039364 of GSK3β, obtaining its full-length coding sequence (CDS) spanning 1263 bp. Gene structure analysis located GSK3β on pig chromosome 13 with 12 exons. Protein structure analysis reflected that GSK3β consisted of 420 amino acids containing PKc-like conserved domains. Phylogenetic analysis underscored the evolutionary conservation and homology of GSK3β across different mammalian species. The evaluation of the protein interaction network, KEGG, and GO pathways implied that GSK3β interacted with 50 proteins, predominantly involved in the Wnt signaling pathway, papillomavirus infection, hippo signaling pathway, hepatocellular carcinoma, gastric cancer, colorectal cancer, breast cancer, endometrial cancer, basal cell carcinoma, and Alzheimer's disease. Functional annotation identified that GSK3β was involved in thirteen GOs, including six molecular functions and seven biological processes. ceRNA network analysis suggested that DSE GSK3β was regulated by 11 miRNA targets. Furthermore, qPCR expression analysis across 15 tissues highlighted that GSK3β was highly expressed in the testis. Subcellular localization analysis indicated that the majority of the GSK3β protein was located in the cytoplasm of ST (swine testis) cells, with a small amount detected in the nucleus. Overall, our findings shed new light on GSK3β's role in DSE reproduction, providing a foundation for further functional studies of GSK3β function.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Biological and Food Engineering, Lyuliang University, Lvliang 033001, China;
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (G.Z.); (F.Y.); (C.L.); (W.L.); (H.D.); (L.Z.); (X.X.); (Q.Y.)
| | - Guiying Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (G.Z.); (F.Y.); (C.L.); (W.L.); (H.D.); (L.Z.); (X.X.); (Q.Y.)
| | - Fuhua Yang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (G.Z.); (F.Y.); (C.L.); (W.L.); (H.D.); (L.Z.); (X.X.); (Q.Y.)
| | - Changyao Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (G.Z.); (F.Y.); (C.L.); (W.L.); (H.D.); (L.Z.); (X.X.); (Q.Y.)
| | - Wan Lin
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (G.Z.); (F.Y.); (C.L.); (W.L.); (H.D.); (L.Z.); (X.X.); (Q.Y.)
| | - Hongmei Dai
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (G.Z.); (F.Y.); (C.L.); (W.L.); (H.D.); (L.Z.); (X.X.); (Q.Y.)
| | - Lan Zhai
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (G.Z.); (F.Y.); (C.L.); (W.L.); (H.D.); (L.Z.); (X.X.); (Q.Y.)
| | - Xuemin Xi
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (G.Z.); (F.Y.); (C.L.); (W.L.); (H.D.); (L.Z.); (X.X.); (Q.Y.)
| | - Qingting Yuan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (G.Z.); (F.Y.); (C.L.); (W.L.); (H.D.); (L.Z.); (X.X.); (Q.Y.)
| | - Jinlong Huo
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (G.Z.); (F.Y.); (C.L.); (W.L.); (H.D.); (L.Z.); (X.X.); (Q.Y.)
| |
Collapse
|
2
|
Common Variation in the PIN1 Locus Increases the Genetic Risk to Suffer from Sertoli Cell-Only Syndrome. J Pers Med 2022; 12:jpm12060932. [PMID: 35743717 PMCID: PMC9225465 DOI: 10.3390/jpm12060932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
We aimed to analyze the role of the common genetic variants located in the PIN1 locus, a relevant prolyl isomerase required to control the proliferation of spermatogonial stem cells and the integrity of the blood–testis barrier, in the genetic risk of developing male infertility due to a severe spermatogenic failure (SPGF). Genotyping was performed using TaqMan genotyping assays for three PIN1 taggers (rs2287839, rs2233678 and rs62105751). The study cohort included 715 males diagnosed with SPGF and classified as suffering from non-obstructive azoospermia (NOA, n = 505) or severe oligospermia (SO, n = 210), and 1058 controls from the Iberian Peninsula. The allelic frequency differences between cases and controls were analyzed by the means of logistic regression models. A subtype specific genetic association with the subset of NOA patients classified as suffering from the Sertoli cell-only (SCO) syndrome was observed with the minor alleles showing strong risk effects for this subset (ORaddrs2287839 = 1.85 (1.17–2.93), ORaddrs2233678 = 1.62 (1.11–2.36), ORaddrs62105751 = 1.43 (1.06–1.93)). The causal variants were predicted to affect the binding of key transcription factors and to produce an altered PIN1 gene expression and isoform balance. In conclusion, common non-coding single-nucleotide polymorphisms located in PIN1 increase the genetic risk to develop SCO.
Collapse
|
3
|
Huang L, Luo R, Yang Z, Xu J, Li H, Mo Z. Association of polymorphisms in PIN1 with progression and susceptibility in gastric cancer. Future Oncol 2022; 18:1557-1568. [PMID: 35105157 DOI: 10.2217/fon-2021-1240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: High expression of PIN1 is associated with gastric cancer progression and risk. Patients & methods: Two single-nucleotide polymorphisms in PIN1, rs2233678 and rs2233679, were examined in gastric cancer patients using PCR-restriction fragment length polymorphism. Results: The rs2233678 GC genotype and C alleles correlated with a decreased susceptibility to gastric cancer. The stratification analysis indicated that the rs2233678 GC genotype was inversely related to gastric cancer risk in never smokers, never drinkers and patients with stage I/II disease. Males and ever drinkers carrying the rs2233679 CT genotype had a mildly elevated susceptibility to gastric cancer. Conclusion: The PIN1 single-nucelotide polymorphisms rs2233678 and rs2233679 correlate with the risk of gastric cancer.
Collapse
Affiliation(s)
- Li Huang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Ruixian Luo
- Department of Blood Transfusion, Guangxi Academy of Medical Sciences & the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Ziji Yang
- Department of Blood Transfusion, Guangxi Academy of Medical Sciences & the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Juanjuan Xu
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Hailan Li
- Department of Blood Transfusion, Guangxi Academy of Medical Sciences & the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhuning Mo
- Department of Blood Transfusion, Guangxi Academy of Medical Sciences & the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
4
|
Kim WJ, Kim BS, Kim HJ, Cho YD, Shin HL, Yoon HI, Lee YS, Baek JH, Woo KM, Ryoo HM. Intratesticular Peptidyl Prolyl Isomerase 1 Protein Delivery Using Cationic Lipid-Coated Fibroin Nanoparticle Complexes Rescues Male Infertility in Mice. ACS NANO 2020; 14:13217-13231. [PMID: 32969647 DOI: 10.1021/acsnano.0c04936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Male infertility is a multifactorial condition. Unexplained male infertility is often caused by spermatogenesis dysfunction. Knockout of Pin1, an important regulator of cell proliferation and differentiation, produces male infertility phenotypes such as testicular immaturity and azoospermia with spermatogonia depletion and blood-testis barrier (BTB) dysfunction. Gene therapy has been clinically considered for the treatment of male infertility, but it is not preferred because of the risks of adverse effects in germ cells. Direct intracellular protein delivery using nanoparticles is considered an effective alternative to gene therapy; however, in vivo testicular protein delivery remains a pressing challenge. Here, we investigated the direct intracellular protein delivery strategy using a fibroin nanoparticle-encapsulated cationic lipid complex (Fibroplex) to restore intratesticular PIN1. Local intratesticular delivery of PIN1 via Fibroplex in Pin1 knockout testes produced fertile mice, achieving recovery from the infertile phenotypes. Mechanistically, PIN1-loaded Fibroplex was successfully delivered into testicular cells, including spermatogonial cells and Sertoli cells, and the sustained release of PIN1 restored the gene expression required for the proliferation of spermatogonial cells and BTB integrity in Pin1 knockout testes. Collectively, testicular PIN1 protein delivery using Fibroplex might be an effective strategy for treating male infertility.
Collapse
Affiliation(s)
- Woo Jin Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong Soo Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Jung Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Dan Cho
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye Lim Shin
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| | - Hee In Yoon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong-Hwa Baek
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung Mi Woo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Cai Z, Zhang J, Xiong J, Ma C, Yang B, Li H. New insights into the potential mechanisms of spermatogenic failure in patients with idiopathic azoospermia. Mol Hum Reprod 2020; 26:469-484. [PMID: 32402059 DOI: 10.1093/molehr/gaaa033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/14/2020] [Indexed: 12/20/2022] Open
Abstract
Abstract
Idiopathic azoospermia (IA) refers to azoospermia without a clear aetiology. Due to the unclear aetiology and pathological mechanism of IA, there is no effective treatment for IA. The development of assisted reproductive and microsperm extraction technologies has brought hope to patients with IA with fertility problems. However, there are still many patients with IA whose testes lack healthy sperm, causing infertility. Therefore, it is key to identify how testicular spermatogenic failure can be reversed to promote spermatogenesis in patients with IA to resolve fertility problems; these goals are a great challenge in reproductive medicine. The underlying genetic factors seem to be important pathological factors of IA. Understanding the role of genetic factors in the pathological mechanism of spermatogenic failure in patients with IA is of great value for future studies and treatments and is also an important reference for the reproductive health of males and their offspring. A method combining sequencing technology and bioinformatics analysis is an important means to understand the genetic pathological mechanisms. We used bioinformatics analysis to study the public human IA dataset. We found that the pathogenic mechanism of IA may be related to abnormal ciliary structure and function and disrupted RNA metabolism in spermatogenic cells. Disrupted m6A regulation of spermatogenesis may be an important pathological mechanism of IA and warrants attention. Finally, we screened for key genes and potential therapeutic drugs to determine future research directions.
Collapse
Affiliation(s)
- Zhonglin Cai
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianzhong Zhang
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Xiong
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chengquan Ma
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Yang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongjun Li
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Hidaka M, Okabe E, Hatakeyama K, Zook H, Uchida C, Uchida T. Fluorescent resonance energy transfer -based biosensor for detecting conformational changes of Pin1. Biochem Biophys Res Commun 2018; 505:399-404. [DOI: 10.1016/j.bbrc.2018.09.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 01/27/2023]
|