1
|
Hasan MM, Kawabata T, Yan C, Sekiya R, Goto S, Urata Y, Li TS. Ionizing radiation induces mild and dose-independent damage to mitochondria in newt cells. Exp Cell Res 2025; 448:114575. [PMID: 40280319 DOI: 10.1016/j.yexcr.2025.114575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
In addition to remarkable regenerative abilities, newts demonstrate a heightened tolerance to radiation compared to mammals. Mitochondria play profound role in cell survival when cells undergo environmental stresses. Thus, our study sought to elucidate the impact of ionizing radiation (IR) on the mitochondria of a newt model Pleurodeles waltl. Primary cells derived from limb tissue of P. waltl were exposed to 0, 5, 10, or 15 Gy X-ray and analyzed at 24h post-irradiation (PIR). Analysis using MitoTracker Red labeling revealed a maximal (p < 0.001) in mitochondrial fission in cells exposed to 5 Gy IR, while mitochondrial fission in cells exposed to 10 and 15 Gy IR was comparable (p < 0.01). Mitochondrial superoxide levels increased in a reverse dose-dependent manner; notably, cells treated with 5 Gy IR produced significantly (p < 0.05) higher mitochondrial superoxide. Mitochondrial membrane potential (ΔΨm) decreased significantly (p < 0.01) with similar extent across all IR-treated groups. Though ΔΨm declined, the ATP content was not changed due to IR. Result from the MTT assay indicated no impairment in mitochondrial activity. Cell counting data suggest negligible impact of IR on viability of cells; however, the phase contrast imaging revealed senescent like morphology of cells. Taken together, cells of P. waltl show mild changes in morphology and function of the mitochondria in response to IR, but seem highly tolerant.
Collapse
Affiliation(s)
- Md Mahmudul Hasan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan; Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Tsuyoshi Kawabata
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan; Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Chen Yan
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Reiko Sekiya
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan; Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Shinji Goto
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan; Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Yoshishige Urata
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan; Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
2
|
Xie Y, Liu X, Xie D, Zhang W, Zhao H, Guan H, Zhou PK. Voltage-dependent anion channel 1 mediates mitochondrial fission and glucose metabolic reprogramming in response to ionizing radiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174246. [PMID: 38955266 DOI: 10.1016/j.scitotenv.2024.174246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
The ionizing radiation (IR) represents a formidable challenge as an environmental factor to mitochondria, leading to disrupt cellular energy metabolism and posing health risks. Although the deleterious impacts of IR on mitochondrial function are recognized, the specific molecular targets remain incompletely elucidated. In this study, HeLa cells subjected to γ-rays exhibited concomitant oxidative stress, mitochondrial structural alterations, and diminished ATP production capacity. The γ-rays induced a dose-dependent induction of mitochondrial fission, simultaneously manifested by an elevated S616/S637 phosphorylation ratio of the dynamin-related protein 1 (DRP1) and a reduction in the expression of the mitochondrial fusion protein mitofusin 2 (MFN2). Knockdown of DRP1 effectively mitigated γ-rays-induced mitochondrial network damage, implying that DRP1 phosphorylation may act as an effector of radiation-induced mitochondrial damage. The mitochondrial outer membrane protein voltage-dependent anion channel 1 (VDAC1) was identified as a crucial player in IR-induced mitochondrial damage. The VDAC1 inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), counteracts the excessive mitochondrial fission induced by γ-rays, consequently rebalancing the glycolytic and oxidative phosphorylation equilibrium. This metabolic shift was uncovered to enhance glycolytic capacity, thus fortifying cellular resilience and elevating the radiosensitivity of cancer cells. These findings elucidate the intricate regulatory mechanisms governing mitochondrial morphology under radiation response. It is anticipated that the development of targeted drugs directed against VDAC1 may hold promise in augmenting the sensitivity of tumor cells to radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Ying Xie
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, PR China
| | - Xiaochang Liu
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Dafei Xie
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Wen Zhang
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Hongling Zhao
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Hua Guan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| |
Collapse
|
3
|
Wang J, Mou X, Lu H, Jiang H, Xian Y, Wei X, Huang Z, Tang S, Cen H, Dong M, Liang Y, Shi G. Exploring a novel seven-gene marker and mitochondrial gene TMEM38A for predicting cervical cancer radiotherapy sensitivity using machine learning algorithms. Front Endocrinol (Lausanne) 2024; 14:1302074. [PMID: 38327905 PMCID: PMC10847243 DOI: 10.3389/fendo.2023.1302074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/07/2023] [Indexed: 02/09/2024] Open
Abstract
Background Radiotherapy plays a crucial role in the management of Cervical cancer (CC), as the development of resistance by cancer cells to radiotherapeutic interventions is a significant factor contributing to treatment failure in patients. However, the specific mechanisms that contribute to this resistance remain unclear. Currently, molecular targeted therapy, including mitochondrial genes, has emerged as a new approach in treating different types of cancers, gaining significant attention as an area of research in addressing the challenge of radiotherapy resistance in cancer. Methods The present study employed a rigorous screening methodology within the TCGA database to identify a cohort of patients diagnosed with CC who had received radiotherapy treatment. The control group consisted of individuals who demonstrated disease stability or progression after undergoing radiotherapy. In contrast, the treatment group consisted of patients who experienced complete or partial remission following radiotherapy. Following this, we identified and examined the differentially expressed genes (DEGs) in the two cohorts. Subsequently, we conducted additional analyses to refine the set of excluded DEGs by employing the least absolute shrinkage and selection operator regression and random forest techniques. Additionally, a comprehensive analysis was conducted in order to evaluate the potential correlation between the expression of core genes and the extent of immune cell infiltration in patients diagnosed with CC. The mitochondrial-associated genes were obtained from the MITOCARTA 3.0. Finally, the verification of increased expression of the mitochondrial gene TMEM38A in individuals with CC exhibiting sensitivity to radiotherapy was conducted using reverse transcription quantitative polymerase chain reaction and immunohistochemistry assays. Results This process ultimately led to the identification of 7 crucial genes, viz., GJA3, TMEM38A, ID4, CDHR1, SLC10A4, KCNG1, and HMGCS2, which were strongly associated with radiotherapy sensitivity. The enrichment analysis has unveiled a significant association between these 7 crucial genes and prominent signaling pathways, such as the p53 signaling pathway, KRAS signaling pathway, and PI3K/AKT/MTOR pathway. By utilizing these 7 core genes, an unsupervised clustering analysis was conducted on patients with CC, resulting in the categorization of patients into three distinct molecular subtypes. In addition, a predictive model for the sensitivity of CC radiotherapy was developed using a neural network approach, utilizing the expression levels of these 7 core genes. Moreover, the CellMiner database was utilized to predict drugs that are closely linked to these 7 core genes, which could potentially act as crucial agents in overcoming radiotherapy resistance in CC. Conclusion To summarize, the genes GJA3, TMEM38A, ID4, CDHR1, SLC10A4, KCNG1, and HMGCS2 were found to be closely correlated with the sensitivity of CC to radiotherapy. Notably, TMEM38A, a mitochondrial gene, exhibited the highest degree of correlation, indicating its potential as a crucial biomarker for the modulation of radiotherapy sensitivity in CC.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xue Mou
- Department of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Haishan Lu
- Clinical Pathological Diagnosis & Research Centra, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Hai Jiang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yuejuan Xian
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xilin Wei
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Ziqiang Huang
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Senlin Tang
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Hongsong Cen
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Mingyou Dong
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Yuexiu Liang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Guiling Shi
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
4
|
Golomb BA, Berg BK, Han JH. Susceptibility to radiation adverse effects in veterans with Gulf War illness and healthy civilians. Sci Rep 2024; 14:874. [PMID: 38195674 PMCID: PMC10776672 DOI: 10.1038/s41598-023-50083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
We evaluated whether veterans with Gulf War illness (VGWI) report greater ionizing radiation adverse effects (RadAEs) than controls; whether radiation-sensitivity is tied to reported chemical-sensitivity; and whether environmental exposures are apparent risk factors for reported RadAEs (rRadAEs). 81 participants (41 VGWI, 40 controls) rated exposure to, and rRadAEs from, four radiation types. The relations of RadAE-propensity (defined as the ratio of rRadAEs to summed radiation exposures) to Gulf War illness (GWI) presence and severity, and to reported chemical-sensitivity were assessed. Ordinal logistic regression evaluated exposure prediction of RadAE-propensity in the full sample, in VGWI, and stratified by age and chemical-sensitivity. RadAE-propensity was increased in VGWI (vs. controls) and related to GWI severity (p < 0.01) and chemical-sensitivity (p < 0.01). Past carbon monoxide (CO) exposure emerged as a strong, robust predictor of RadAE-propensity on univariable and multivariable analyses (p < 0.001 on multivariable assessment, without and with adjustment for VGWI case status), retaining significance in age-stratified and chemical-sensitivity-stratified replication analyses. Thus, RadAE-propensity, a newly-described GWI-feature, relates to chemical-sensitivity, and is predicted by CO exposure-both features reported for nonionizing radiation sensitivity, consistent with shared mitochondrial/oxidative toxicity across radiation frequencies. Greater RadAE vulnerability fits an emerging picture of heightened drug/chemical susceptibility in VGWI.
Collapse
Affiliation(s)
- Beatrice Alexandra Golomb
- Department of Medicine, UC San Diego School of Medicine, University of California, San Diego, 9500 Gilman Dr. #0995, La Jolla, CA, 92093-0995, USA.
| | - Brinton Keith Berg
- Department of Medicine, UC San Diego School of Medicine, University of California, San Diego, 9500 Gilman Dr. #0995, La Jolla, CA, 92093-0995, USA
| | - Jun Hee Han
- Department of Medicine, UC San Diego School of Medicine, University of California, San Diego, 9500 Gilman Dr. #0995, La Jolla, CA, 92093-0995, USA
| |
Collapse
|
5
|
Wang L, Rivas R, Wilson A, Park YM, Walls S, Yu T, Miller AC. Dose-Dependent Effects of Radiation on Mitochondrial Morphology and Clonogenic Cell Survival in Human Microvascular Endothelial Cells. Cells 2023; 13:39. [PMID: 38201243 PMCID: PMC10778067 DOI: 10.3390/cells13010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
To better understand radiation-induced organ dysfunction at both high and low doses, it is critical to understand how endothelial cells (ECs) respond to radiation. The impact of irradiation (IR) on ECs varies depending on the dose administered. High doses can directly damage ECs, leading to EC impairment. In contrast, the effects of low doses on ECs are subtle but more complex. Low doses in this study refer to radiation exposure levels that are below those that cause immediate and necrotic damage. Mitochondria are the primary cellular components affected by IR, and this study explored their role in determining the effect of radiation on microvascular endothelial cells. Human dermal microvascular ECs (HMEC-1) were exposed to varying IR doses ranging from 0.1 Gy to 8 Gy (~0.4 Gy/min) in the AFRRI 60-Cobalt facility. Results indicated that high doses led to a dose-dependent reduction in cell survival, which can be attributed to factors such as DNA damage, oxidative stress, cell senescence, and mitochondrial dysfunction. However, low doses induced a small but significant increase in cell survival, and this was achieved without detectable DNA damage, oxidative stress, cell senescence, or mitochondrial dysfunction in HMEC-1. Moreover, the mitochondrial morphology was assessed, revealing that all doses increased the percentage of elongated mitochondria, with low doses (0.25 Gy and 0.5 Gy) having a greater effect than high doses. However, only high doses caused an increase in mitochondrial fragmentation/swelling. The study further revealed that low doses induced mitochondrial elongation, likely via an increase in mitochondrial fusion protein 1 (Mfn1), while high doses caused mitochondrial fragmentation via a decrease in optic atrophy protein 1 (Opa1). In conclusion, the study suggests, for the first time, that changes in mitochondrial morphology are likely involved in the mechanism for the radiation dose-dependent effect on the survival of microvascular endothelial cells. This research, by delineating the specific mechanisms through which radiation affects endothelial cells, offers invaluable insights into the potential impact of radiation exposure on cardiovascular health.
Collapse
Affiliation(s)
- Li Wang
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (Y.M.P.); (T.Y.)
| | - Rafael Rivas
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
| | - Angelo Wilson
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (Y.M.P.); (T.Y.)
| | - Yu Min Park
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (Y.M.P.); (T.Y.)
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Shannon Walls
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
| | - Tianzheng Yu
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (Y.M.P.); (T.Y.)
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Alexandra C. Miller
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
- Department of Radiation Science and Radiology, Uniformed Services University Health Sciences, Bethesda, MD 20889, USA
- Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
6
|
The 'stealth-bomber' paradigm for deciphering the tumour response to carbon-ion irradiation. Br J Cancer 2023; 128:1429-1438. [PMID: 36639527 PMCID: PMC10070470 DOI: 10.1038/s41416-022-02117-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 01/14/2023] Open
Abstract
Numerous studies have demonstrated the higher biological efficacy of carbon-ion irradiation (C-ions) and their ballistic precision compared with photons. At the nanometre scale, the reactive oxygen species (ROS) produced by radiation and responsible for the indirect effects are differentially distributed according to the type of radiation. Photon irradiation induces a homogeneous ROS distribution, whereas ROS remain condensed in clusters in the C-ions tracks. Based on this linear energy transfer-dependent differential nanometric ROS distribution, we propose that the higher biological efficacy and specificities of the molecular response to C-ions rely on a 'stealth-bomber' effect. When biological targets are on the trajectories of the particles, the clustered radicals in the tracks are responsible for a 'bomber' effect. Furthermore, the low proportion of ROS outside the tracks is not able to trigger the cellular mechanisms of defence and proliferation. The ability of C-ions to deceive the cellular defence of the cancer cells is then categorised as a 'stealth' effect. This review aims to classify the biological arguments supporting the paradigm of the 'stealth-bomber' as responsible for the biological superiority of C-ions compared with photons. It also explains how and why C-ions will always be more efficient for treating patients with radioresistant cancers than conventional radiotherapy.
Collapse
|
7
|
Huangfu C, Tang N, Yang X, Gong Z, Li J, Jia J, Zhang J, Huang Y, Ma Y. Improvement of irradiation-induced fibroblast damage by α2-macroglobulin through alleviating mitochondrial dysfunction. PHARMACEUTICAL BIOLOGY 2022; 60:1365-1373. [PMID: 35881053 PMCID: PMC9336502 DOI: 10.1080/13880209.2022.2096077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/02/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT α2-Macroglobulin (α2-M) is believed to be a potential anti-irradiation agent, but related mechanisms remains unclear. OBJECTIVE We investigated the irradiation protective effect of α2-M. MATERIALS AND METHODS A total of 10 Gy dose of irradiation was used to damage human skin fibroblasts. The influence of α2-M (100 µg/mL) on the proliferation, migration, invasion and apoptosis of fibroblasts was observed using Cell Counting Kit-8 (CCK8), wound healing, transwell, and flow cytometry. Malondialdehyde, superoxide dismutase and catalase was measured using related ELISA kits. The levels of mitochondrial membrane potential and calcium were detected using flow cytometry. The expression of transient receptor potential melastatin 2 (TRPM2) was investigated through western blotting and immunofluorescence staining. RESULTS High purity of α2-M was isolated from Cohn fraction IV. α2-M significantly increased cell proliferation, migration, invasion, but suppressed cell apoptosis after irradiation. The promotion of cell proliferation, migration and invasion by α2-M exceeded over 50% compared group irradiation. The increased cell ratio in the S phase and decreased cell ratio in the G2 phase induced by irradiation were remarkably reversed by α2-M. α2-M markedly suppressed the increased oxidative stress level caused by irradiation. The mitochondrial damage induced by irradiation was improved by α2-M through inhibiting mitochondrial membrane potential loss, calcium and TRPM2 expression. DISCUSSION AND CONCLUSIONS α2-M significantly promoted the decreased fibroblast viability and improved the mitochondria dysfunction caused by irradiation. α2-M might present anti-radiation effect through alleviating mitochondrial dysfunction caused by irradiation. This study could provide a novel understanding about the improvement of α2-M on irradiation-induced injury.
Collapse
Affiliation(s)
- Chaoji Huangfu
- Center for Disease Control and Prevention, Western Theater Command, Lanzhou, PR China
| | - Nan Tang
- School of Nursing, Lanzhou University, Lanzhou, PR China
| | - Xiaokun Yang
- Department of Emergency Medicine, The General Hospital of Western Theater Command, Chengdu, PR China
| | - Zhanwei Gong
- Center for Disease Control and Prevention, Western Theater Command, Lanzhou, PR China
| | - Junzheng Li
- Center for Disease Control and Prevention, Western Theater Command, Lanzhou, PR China
| | - Junting Jia
- NMPA Key Laboratory for Quality Control of Blood Products, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, PR China
| | - Jingang Zhang
- NMPA Key Laboratory for Quality Control of Blood Products, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, PR China
| | - Yan Huang
- Department of Neurology, Chengdu Third People’s Hospital, Chengdu, PR China
| | - Yuyuan Ma
- NMPA Key Laboratory for Quality Control of Blood Products, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, PR China
| |
Collapse
|
8
|
Tang H, He Y, Liang Z, Li J, Dong Z, Liao Y. The therapeutic effect of adipose-derived stem cells on soft tissue injury after radiotherapy and their value for breast reconstruction. Stem Cell Res Ther 2022; 13:493. [PMID: 36195925 PMCID: PMC9531407 DOI: 10.1186/s13287-022-02952-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background Postmastectomy radiotherapy is considered to be a necessary treatment in the therapy of breast cancer, while it will cause soft tissue damage and complications, which are closely related to the success rate and effectiveness of breast reconstruction. After radiotherapy, cutaneous tissue becomes thin and brittle, and its compliance decreases. Component fat grafting and adipose-derived stem cell therapy are considered to have great potential in treating radiation damage and improving skin compliance after radiotherapy. Main body In this paper, the basic types and pathological mechanisms of skin and soft tissue damage to breast skin caused by radiation therapy are described. The 2015–2021 studies related to stem cell therapy in PubMed were also reviewed. Studies suggest that adipose-derived stem cells exert their biological effects mainly through cargoes carried in extracellular vesicles and soluble secreted factors. Compared to traditional fat graft breast reconstruction, ADSC therapy amplifies the effects of stem cells in it. In order to obtain a more purposeful therapeutic effect, proper stem cell pretreatment may achieve more ideal and safe results. Conclusion Recent research works about ADSCs and other MSCs mainly focus on curative effects in the acute phase of radiation injury, and there is little research about treatment of chronic phase complications. The efficacy of stem cell therapy on alleviating skin fibrosis and its underlying mechanism require further research.
Collapse
Affiliation(s)
- Haojing Tang
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Yufei He
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Zhuokai Liang
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Jian Li
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Ziqing Dong
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| | - Yunjun Liao
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
9
|
Nosrati H, Ghaffarlou M, Salehiabar M, Mousazadeh N, Abhari F, Barsbay M, Ertas YN, Rashidzadeh H, Mohammadi A, Nasehi L, Rezaeejam H, Davaran S, Ramazani A, Conde J, Danafar H. Magnetite and bismuth sulfide Janus heterostructures as radiosensitizers for in vivo enhanced radiotherapy in breast cancer. BIOMATERIALS ADVANCES 2022; 140:213090. [PMID: 36027669 DOI: 10.1016/j.bioadv.2022.213090] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Janus heterostructures based on bimetallic nanoparticles have emerged as effective radiosensitizers owing to their radiosensitization capabilities in cancer cells. In this context, this study aims at developing a novel bimetallic nanoradiosensitizer, Bi2S3-Fe3O4, to enhance tumor accumulation and promote radiation-induced DNA damage while reducing adverse effects. Due to the presence of both iron oxide and bismuth sulfide metallic nanoparticles in these newly developed nanoparticle, strong radiosensitizing capacity is anticipated through the generation of reactive oxygen species (ROS) to induce DNA damage under X-Ray irradiation. To improve blood circulation time, biocompatibility, colloidal stability, and tuning surface functionalization, the surface of Bi2S3-Fe3O4 bimetallic nanoparticles was coated with bovine serum albumin (BSA). Moreover, to achieve higher cellular uptake and efficient tumor site specificity, folic acid (FA) as a targeting moiety was conjugated onto the bimetallic nanoparticles, termed Bi2S3@BSA-Fe3O4-FA. Biocompatibility, safety, radiation-induced DNA damage by ROS activation and generation, and radiosensitizing ability were confirmed via in vitro and in vivo assays. The administration of Bi2S3@BSA-Fe3O4-FA in 4T1 breast cancer murine model upon X-ray radiation revealed highly effective tumor eradication without causing any mortality or severe toxicity in healthy tissues. These findings offer compelling evidence for the potential capability of Bi2S3@BSA-Fe3O4-FA as an ideal nanoparticle for radiation-induced cancer therapy and open interesting avenues of future research in this area.
Collapse
Affiliation(s)
- Hamed Nosrati
- Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan 45371-38791, Iran
| | | | - Marziyeh Salehiabar
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Navid Mousazadeh
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fatemeh Abhari
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Murat Barsbay
- Hacettepe University, Department of Chemistry, Beytepe, Ankara 06800, Turkey
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey; Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Hamid Rashidzadeh
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Ali Mohammadi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Leila Nasehi
- Department of Medical Laboratory, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Rezaeejam
- Department of Radiology, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Soodabeh Davaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, P.O. Box 51656-65811, Tabriz, Iran
| | - Ali Ramazani
- Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan 45371-38791, Iran; Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran.
| | - João Conde
- ToxOmics, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| | - Hossein Danafar
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey.
| |
Collapse
|
10
|
Al-Jumayli M, Brown SL, Chetty IJ, Extermann M, Movsas B. The Biological Process of Aging and the Impact of Ionizing Radiation. Semin Radiat Oncol 2022; 32:172-178. [DOI: 10.1016/j.semradonc.2021.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Li F, Bing Z, Chen W, Ye F, Liu Y, Ding L, Jin X. Prognosis biomarker and potential therapeutic target CRIP2 associated with radiosensitivity in NSCLC cells. Biochem Biophys Res Commun 2021; 584:73-79. [PMID: 34773852 DOI: 10.1016/j.bbrc.2021.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022]
Abstract
Radiotherapy plays a major role in non-small cell lung cancer (NSCLC) treatment. The curative efficacy of advanced NSCLC is unsatisfactory because of its radioresistance to conventional radiotherapy. The biomarkers which can be used to diagnose radiosensitivity or predict for prognosis are beneficial in promoting curative effects. In this study, NSCLC cell lines with acquired radioresistance to X-rays were obtained through fractionated irradiation. The differentially expressed proteins (DEPs) between the self-established radioresistant NSCLC cell line A549-R11 and control (A549-CK) were measured by proteomic analysis. Among the detected DEPs, CRIP2, ARHGDIB, and PADI3 were validated to be up-regulated in radioresistant cells, in mRNA and protein levels. Further analysis of bioinformatics deciphered that CRIP2, as a potential biomarker for diagnosis and a key biomarker for prediction of prognosis, may impact the X-ray radiosensitivity of NSCLC by regulating the occurrence of apoptosis and cell cycle arrest; as such, it may serve as a potent therapeutic target to facilitate NSCLC radiotherapy. CRIP2 and other DEPs may shed new light on the recognition of complex factors associated with radiation-responsiveness and finally be beneficial in the advancement of personalized therapies and precision medical treatment.
Collapse
Affiliation(s)
- Feifei Li
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Zhitong Bing
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, 730000, China
| | - Fei Ye
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, 730000, China
| | - Yan Liu
- Translational Radiation Oncology & Medical Physics Research Unit, School of Medical Imaging, Binzhou Medical University, Yantai, 264003, China
| | - Lan Ding
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China.
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, 730000, China.
| |
Collapse
|
12
|
Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci 2021; 22:ijms222011047. [PMID: 34681703 PMCID: PMC8541263 DOI: 10.3390/ijms222011047] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Correspondence:
| | - Claire Rodriguez-Lafrasse
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| |
Collapse
|
13
|
Effects of low-dose X-ray medical diagnostics on female gonads: Insights from large animal oocytes and human ovaries as complementary models. PLoS One 2021; 16:e0253536. [PMID: 34166427 PMCID: PMC8224917 DOI: 10.1371/journal.pone.0253536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/08/2021] [Indexed: 11/19/2022] Open
Abstract
Diagnostic imaging has significantly grown over the last thirty years as indispensable support for diagnostic, prognostic, therapeutic and monitoring procedures of human diseases. This study explored the effects of low-dose X-ray medical diagnostics exposure on female fertility. To aim this, cumulus-oocyte complexes (COCs) recovered from the ovaries of juvenile sheep and human ovaries were used as complementary models for in vitro studies. In the sheep model, the effects of low-dose X-rays on oocyte viability and developmental competence were evaluated. In human ovaries originated from two age group (21–25 and 33–36 years old) subjects with gender dysphoria, X-rays effects on tissue morphology, follicular density and expression of apoptosis-related (NOXA, PUMA, Bcl2, Bak, γH2AX) and cell cycle-related genes (p21 and ki67) were investigated. It was noted that in sheep, the minimum dose of 10 mGy did not influence most of examined parameters at oocyte and embryo levels, whereas 50 and 100 mGy X-ray exposure reduced oocyte bioenergetic/oxidative activity but without any visible effects on oocyte and embryo development. In addition, blastocyst bioenergetic/oxidative status was reduced with all used doses. Overall data on human ovaries showed that low-dose X-rays, similarly as in sheep, did not alter any of examined parameters. However, in women belonging to the 33–36 year group, significantly reduced follicular density was observed after exposure to 50 and 100 mGy, and increased NOXA and Bax expression after exposure at 50 mGy. In conclusion, used low-doses of X-ray exposure, which resemble doses used in medical diagnostics, produce weak damaging effects on female fertility with increased susceptibility in advanced age.
Collapse
|
14
|
Antitumor Effects of Freeze-Dried Robusta Coffee ( Coffea canephora) Extracts on Breast Cancer Cell Lines. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5572630. [PMID: 34113419 PMCID: PMC8154281 DOI: 10.1155/2021/5572630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023]
Abstract
Coffee consumption is believed to have chemopreventive and chemotherapeutic effects and to contribute to preventing the development and progression of cancer. However, there is still controversy around these claims. As indicated in our previous works, diet can influence the risk of breast cancer. Intake of coffee is hypothesized to reduce this risk, but current scientific evidence is not conclusive. This work is aimed at studying the effects of Robusta coffee bean extract on cell viability, proliferation, and apoptosis of different human cancers, especially breast cancer cell lines. To this end, cell viability was evaluated by Alamar Blue in 2D and 3D models, the cell cycle by PI, apoptosis by annexin V, mitochondrial morphology, and functionality by mitoTracker, and colony formation capacity by the clonogenic assay. Green and dark coffee extract significantly reduced viability in human breast, colorectal, brain, and bone cancer cells. Coffee anticancer activity was clearly evidenced in MDA-MB-231 (ER−) and MCF-7 (ER+) breast cancer cells but not in the normal breast cell line. In addition, coffee extract induces an increase S phase and a decrease G2/M population in breast cancer cells, affected the mitochondrial morphology, and triggered apoptosis. MDA-MB-231 breast cancer cells lost their clonogenic capacity after treatment. The antitumor activity was demonstrated in both 2D and 3D culture cell models.
Collapse
|
15
|
Si Q, Ye Q, Bing Z, Fan R, Hu X, Liu B, Wang J, Liu Y, An X. Carbon Ion Irradiation Enhances the Anti-tumor Efficiency in Tongue Squamous Cell Carcinoma via Modulating the FAK Signaling. Front Public Health 2021; 9:631118. [PMID: 33634070 PMCID: PMC7901966 DOI: 10.3389/fpubh.2021.631118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/05/2021] [Indexed: 11/24/2022] Open
Abstract
Oral cancer is a very aggressive disease with high rates of recurrence and metastasis. This study aimed at addressing how efficiently tongue cancer is suppressed after carbon ion irradiation. Here, the close relationship between upregulated expression of focal adhesion kinase (FAK) and high metastatic status in tongue squamous cell carcinoma patients was validated using bioinformatics and immunohistochemical analyses. Our data indicated that FAK suppression significantly enhanced the killing effect induced by irradiation in the tongue cancer cell line CAL27, as evidenced by increased apoptotic induction and reduced colony formation. More importantly, in FAK-deficient cells, carbon ion irradiation was shown to remarkably inhibit migration and invasion by delaying wound healing and slowing down motility. Further studies revealed that irradiation exposure caused disorganization of the actin cytoskeleton and reduced cell adhesive energy in FAK-deficient cells. Moreover, carbon ion treatment, in combination with FAK silencing, markedly blocked the phosphorylation levels of FAK, and paxillin, which partly contributed to the reduced motility of tongue squamous cell carcinoma CAL27 cells. Collectively, these results suggest that the prominent obstructing role of carbon ion irradiation in the growth inhibition and metastatic behavior of tumors, including attenuation of cell adhesiveness, motility, and invasiveness, could be distinctly modulated by FAK-mediated downstream pathways.
Collapse
Affiliation(s)
- Qingzong Si
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Qian Ye
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Zhitong Bing
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Ruihong Fan
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Xiaoli Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Bin Liu
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Jizeng Wang
- Institute of Solid Mechanics, School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, China
| | - Yang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xiaoli An
- School of Stomatology, Lanzhou University, Lanzhou, China
| |
Collapse
|
16
|
Liu B, Chen W, Li H, Li F, Jin X, Li Q. Radiosensitization of NSCLC cells to X-rays and carbon ions by the CHK1/CHK2 inhibitor AZD7762, Honokiol and Tunicamycin. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:723-732. [PMID: 32857208 DOI: 10.1007/s00411-020-00867-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Although radiotherapy, especially carbon-ion radiotherapy, is an effective treatment modality against non-small-cell lung cancer (NSCLC), studies using radiation combined with sensitizer for improving the efficacy of radiotherapy are still needed. In this work, we aimed to investigate in NSCLC A549 and H1299 cell lines the effects of different linear energy transfer (LET) radiations combined with diverse sensitizing compounds. Cells pretreated with the CHK1/CHK2 inhibitor AZD7762, Honokiol or Tunicamycin were irradiated with low-LET X-rays and high-LET carbon ions. Cell survival was assessed using the clonogenic cell survival assay. Cell cycle distribution and apoptosis were measured with flow cytometry, and DNA double strand break (DSB) and repair were detected using γ-H2AX immunofluorescence staining. Our results revealed that AZD7762, Honokiol and Tunicamycin demonstrated low cytotoxicity to NSCLC cells and a pronounced radiosensitizing effect on NSCLC cells exposed to carbon ions than X-rays. Unrepaired DNA DSB damages, the abrogation of G2/M arrest induced by irradiation, and finally apoptotic cell death were the main causes of the radiosensitizing effect. Thus, our data suggest that high-LET carbon ion combined with these compounds may be a potentially effective therapeutic strategy for locally advanced NSCLC.
Collapse
Affiliation(s)
- Bingtao Liu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongbin Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feifei Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
17
|
Giovanetti A, Tortolici F, Rufini S. Why Do the Cosmic Rays Induce Aging? Front Physiol 2020; 11:955. [PMID: 32903447 PMCID: PMC7434975 DOI: 10.3389/fphys.2020.00955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
The increasing duration of space missions involves a progressively higher exposure of astronauts to cosmic rays, whose most hazardous component is made up of High-Atomic number and High-Energy (HZE) ions. HZE ions interact along their tracks with biological molecules inducing changes on living material qualitatively different from that observed after irradiation for therapeutic purposes or following nuclear accidents. HZE ions trigger in cells different responses initialized by DNA damage and mitochondria dysregulation, which cause a prolonged state of sterile inflammation in the tissues. These cellular phenomena may explain why spending time in space was found to cause the onset of a series of diseases normally related to aging. These changes that mimic aging but take place more quickly make space flights also an opportunity to study the mechanisms underlying aging. In this short review, we describe the biological mechanisms underlying cell senescence and aging; the peculiar characteristics of HZE ions, their interaction with living matter and the effects on the organism; the key role of mitochondria in HZE ion-induced health effects and aging-related phenomena.
Collapse
Affiliation(s)
- Anna Giovanetti
- ENEA, Department of Energy and Sustainable Economic, Rome, Italy
| | - Flavia Tortolici
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Rufini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
18
|
Zhang X, Huang W, Fan Y, Sun Y, Ge X. Role of GTPases in the regulation of mitochondrial dynamics in Parkinson's disease. Exp Cell Res 2019; 382:111460. [PMID: 31194975 DOI: 10.1016/j.yexcr.2019.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/27/2019] [Accepted: 06/08/2019] [Indexed: 12/11/2022]
Abstract
Mitochondria are highly dynamic organelle that undergo frequent fusion and division, and the balance of these opposing processes regulates mitochondrial morphology, distribution, and function. Mitochondrial fission facilitates the replication and distribution of mitochondria during cell division, whereas the fusion process including inner and outer mitochondrial membrane fusion allows the exchange of intramitochondrial material between adjacent mitochondria. Despite several GTPase family proteins have been implicated as key modulators of mitochondrial dynamics, the mechanisms by which these proteins regulate mitochondrial homeostasis and function remain not clearly understood. Neuronal function and survival are closely related to mitochondria dynamics, and disturbed mitochondrial fission/fusion may influence neurotransmission, synaptic maintenance, neuronal survival and function. Recent studies have shown that mitochondrial dysfunction caused by aberrant mitochondrial dynamics plays an essential role in the pathogenesis of both sporadic and familial Parkinson's disease (PD). Collectively, we review the molecular mechanism of known GTPase proteins in regulating mitochondrial fission and fusion, but also highlight the causal role for mitochondrial dynamics in PD pathogenesis.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Department of Pharmacology, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China
| | - Wenmin Huang
- Department of Pharmacology, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Yiyun Fan
- Department of Pharmacology, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Ying Sun
- Department of Pharmacology, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoqun Ge
- Department of Pharmacology, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
19
|
Li F, Li Z, Jin X, Liu Y, Zhang P, Li P, Shen Z, Wu A, Chen W, Li Q. Ultra-small gadolinium oxide nanocrystal sensitization of non-small-cell lung cancer cells toward X-ray irradiation by promoting cytostatic autophagy. Int J Nanomedicine 2019; 14:2415-2431. [PMID: 31040665 PMCID: PMC6455003 DOI: 10.2147/ijn.s193676] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gadolinium-based nanoparticles (GdNPs) have been used as theranostic sensitizers in clinical radiotherapy studies; however, the biomechanisms underlying the radio-sensitizing effects of GdNPs have yet to be determined. In this study, ultra-small gadolinium oxide nanocrystals (GONs) were employed to investigate their radiosensitizing effects and biological mechanisms in non-small-cell lung cancer (NSCLC) cells under X-ray irradiation. METHOD AND MATERIALS GONs were synthesized using polyol method. Hydroxyl radical production, oxidative stress, and clonogenic survival after X-ray irradiation were used to evaluate the radiosensitizing effects of GONs. DNA double-strand breakage, cell cycle phase, and apoptosis and autophagy incidences were investigated in vitro to determine the radiosensitizing biomechanism of GONs under X-ray irradiation. RESULTS GONs induced hydroxyl radical production and oxidative stress in a dose- and concentration-dependent manner in NSCLC cells after X-ray irradiation. The sensitizer enhancement ratios of GONs ranged between 19.3% and 26.3% for the NSCLC cells under investigation with a 10% survival rate compared with that of the cells treated with irradiation alone. Addition of 3-methyladenine to the cell medium decreased the incidence rate of autophagy and increased cell survival, supporting the idea that the GONs promoted cytostatic autophagy in NSCLC cells under X-ray irradiation. CONCLUSION This study examined the biological mechanisms underlying the radiosensitizing effects of GONs on NSCLC cells and presented the first evidence for the radiosensitizing effects of GONs via activation of cytostatic autophagy pathway following X-ray irradiation.
Collapse
Affiliation(s)
- Feifei Li
- Institute of Modern Physics, Chinese Academy of Sciences, Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China, ;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihou Li
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Magnetic Materials and Devices, Chinese Academy of Sciences, Division of Functional Materials and Nano Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China, ;
| | - Yan Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China, ;
| | - Pengcheng Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China, ;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Li
- Institute of Modern Physics, Chinese Academy of Sciences, Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China, ;
| | - Zheyu Shen
- Key Laboratory of Magnetic Materials and Devices, Chinese Academy of Sciences, Division of Functional Materials and Nano Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Aiguo Wu
- Key Laboratory of Magnetic Materials and Devices, Chinese Academy of Sciences, Division of Functional Materials and Nano Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China, ;
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China, ;
| |
Collapse
|
20
|
Qi Z, Huang Z, Xie F, Chen L. Dynamin-related protein 1: A critical protein in the pathogenesis of neural system dysfunctions and neurodegenerative diseases. J Cell Physiol 2018; 234:10032-10046. [PMID: 30515821 DOI: 10.1002/jcp.27866] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
Abstract
Mitochondria play a key role in the maintenance of neuronal function by continuously providing energy. Here, we will give a detailed review about the recent developments in regards to dynamin-related protein 1 (Drp1) induced unbalanced mitochondrial dynamics, excessive mitochondrial division, and neuronal injury in neural system dysfunctions and neurodegenerative diseases, including the Drp1 knockout induced mice embryonic death, the dysfunction of the Drp1-dependent mitochondrial division induced neuronal cell apoptosis and impaired neuronal axonal transportation, the abnormal interaction between Drp1 and amyloid β (Aβ) in Alzheimer's disease (AD), the mutant Huntingtin (Htt) in Huntington's disease (HD), and the Drp1-associated pathogenesis of other neurodegenerative diseases such as Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Drp1 is required for mitochondrial division determining the size, shape, distribution, and remodeling as well as maintaining of mitochondrial integrity in mammalian cells. In addition, increasing reports indicate that the Drp1 is involved in some cellular events of neuronal cells causing some neural system dysfunctions and neurodegenerative diseases, including impaired mitochondrial dynamics, apoptosis, and several posttranslational modification induced increased mitochondrial divisions. Recent studies also revealed that the Drp1 can interact with Aβ, phosphorylated τ, and mutant Htt affecting the mitochondrial shape, size, distribution, axonal transportation, and energy production in the AD and HD neuronal cells. These changes can affect the health of mitochondria and the function of synapses causing neuronal injury and eventually leading to the dysfunction of memory, cognitive impairment, resting tremor, posture instability, involuntary movements, and progressive muscle atrophy and paralysis in patients.
Collapse
Affiliation(s)
- Zhihao Qi
- Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Zhen Huang
- Department of Pharmacy, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Feng Xie
- Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Linxi Chen
- Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| |
Collapse
|