1
|
Wang J, Zhang HM, Zhu GH, Zhao LL, Shi J, Dai ZT, Li JP, Li XR, Sun F, Wu Y, Chen SY, Li HN, Liao XH, Xiang Y. STT3-mediated aberrant N-glycosylation of CD24 inhibits paclitaxel sensitivity in triple-negative breast cancer. Acta Pharmacol Sin 2025; 46:1097-1110. [PMID: 39668180 PMCID: PMC11950364 DOI: 10.1038/s41401-024-01419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/27/2024] [Indexed: 12/14/2024]
Abstract
Paclitaxel is one of the main chemotherapic medicines against triple-negative breast cancer (TNBC) in clinic. However, it has been perplexed by paclitaxel resistance in TNBC patients, resulting in a poor prognosis. Abnormal protein glycosylation is closely related to the occurrence and progression of tumors and malignant phenotypes such as chemotherapy resistance. CD24 is a highly glycosylated membrane protein that is highly expressed in TNBC, leading to tumorigenesis and poor prognosis. In this study we investigated the relationship between abnormal glycosylation of CD24 and paclitaxel susceptibility in TNBC and the molecular mechanisms. We showed that CD24 protein levels were significantly up-regulated in both TNBC tissues and cells, and CD24 protein was highly glycosylated. Genetic and pharmacological inhibition of N-glycosylation of CD24 enhances the anticancer activity of paclitaxel in vitro and tumor xenograft models. We revealed that the molecular mechanism of N-glycosylation of CD24 in paclitaxel resistance involved inhibition of ferroptosis, a new form that regulates cell death. Inhibition of N-glycosylation of CD24 increased glutathione consumption, iron content, and lipid peroxidation, resulting in paclitaxel-induced ferroptosis. We demonstrated that endoplasmic reticulum (ER)-associated glycosyltransferase STT3 isoforms (including both STT3A and STT3B isoforms) enable N-glycosylation of the L-asparagine (N) site. Knockout of the endogenous STT3 isoform in TNBC cells partially reduced the glycosylation status of CD24. Our results demonstrate the critical role of N-glycosylation of CD24 in weakening drug sensitivity by inhibiting ferroptosis, highlighting new insights that targeting N-glycosylation of CD24 has great potential to promote chemotherapy sensitivity and efficacy.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
- Department of Materials Science, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Hui-Min Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
- Department of Human Anatomy&Histoembryology, School of Basic Medical sciences, Xinxiang Medical University, Xinxiang, 453000, China
| | - Guan-Hua Zhu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Li-Li Zhao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Ji Shi
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Zhou-Tong Dai
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
- Department of Gynaecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Peng Li
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Xing-Rui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fan Sun
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yuan Wu
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Shao-Yong Chen
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Han-Ning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xing-Hua Liao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Yuan Xiang
- Department of Medical Laboratory, Tongji Medical College, Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, 430014, China.
| |
Collapse
|
2
|
Miao C, Huang Y, Zhang C, Wang X, Wang B, Zhou X, Song Y, Wu P, Chen ZS, Feng Y. Post-translational modifications in drug resistance. Drug Resist Updat 2025; 78:101173. [PMID: 39612546 DOI: 10.1016/j.drup.2024.101173] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/24/2024] [Accepted: 11/16/2024] [Indexed: 12/01/2024]
Abstract
Resistance to antitumor drugs, antimicrobial drugs, and antiviral drugs severely limits treatment effectiveness and cure rate of diseases. Protein post-translational modifications (PTMs) represented by glycosylation, ubiquitination, SUMOylation, acetylation, phosphorylation, palmitoylation, and lactylation are closely related to drug resistance. PTMs are typically achieved by adding sugar chains (glycosylation), small proteins (ubiquitination), lipids (palmitoylation), or functional groups (lactylation) to amino acid residues. These covalent additions are usually the results of signaling cascades and could be reversible, with the triggering mechanisms depending on the type of modifications. PTMs are involved in antitumor drug resistance, not only as inducers of drug resistance but also as targets for reversing drug resistance. Bacteria exhibit multiple PTMs-mediated antimicrobial drug resistance. PTMs allow viral proteins and host cell proteins to form complex interaction networks, inducing complex antiviral drug resistance. This review summarizes the important roles of PTMs in drug resistance, providing new ideas for exploring drug resistance mechanisms, developing new drug targets, and guiding treatment plans.
Collapse
Affiliation(s)
- Chenggui Miao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, China; Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yurong Huang
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital, Jilin University, Changchun 130021, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Bing Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xinyue Zhou
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yingqiu Song
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Peng Wu
- Department of Anatomy, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zhe-Sheng Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong.
| |
Collapse
|
3
|
Wilczak M, Surman M, Przybyło M. Altered Glycosylation in Progression and Management of Bladder Cancer. Molecules 2023; 28:molecules28083436. [PMID: 37110670 PMCID: PMC10146225 DOI: 10.3390/molecules28083436] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Bladder cancer (BC) is the 10th most common malignancy worldwide, with an estimated 573,000 new cases and 213,000 deaths in 2020. Available therapeutic approaches are still unable to reduce the incidence of BC metastasis and the high mortality rates of BC patients. Therefore, there is a need to deepen our understanding of the molecular mechanisms underlying BC progression to develop new diagnostic and therapeutic tools. One such mechanism is protein glycosylation. Numerous studies reported changes in glycan biosynthesis during neoplastic transformation, resulting in the appearance of the so-called tumor-associated carbohydrate antigens (TACAs) on the cell surface. TACAs affect a wide range of key biological processes, including tumor cell survival and proliferation, invasion and metastasis, induction of chronic inflammation, angiogenesis, immune evasion, and insensitivity to apoptosis. The purpose of this review is to summarize the current information on how altered glycosylation of bladder cancer cells promotes disease progression and to present the potential use of glycans for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Magdalena Wilczak
- Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Street, 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Łojasiewicza 11 Street, 30-348 Krakow, Poland
| | - Magdalena Surman
- Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Street, 30-387 Krakow, Poland
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Street, 30-387 Krakow, Poland
| |
Collapse
|
4
|
Targeted Inhibition of O-Linked β-N-Acetylglucosamine Transferase as a Promising Therapeutic Strategy to Restore Chemosensitivity and Attenuate Aggressive Tumor Traits in Chemoresistant Urothelial Carcinoma of the Bladder. Biomedicines 2022; 10:biomedicines10051162. [PMID: 35625898 PMCID: PMC9138654 DOI: 10.3390/biomedicines10051162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023] Open
Abstract
Acquisition of acquired chemoresistance during treatment cycles in urothelial carcinoma of the bladder (UCB) is the major cause of death through enhancing the risk of cancer progression and metastasis. Elevated glucose flux through the abnormal upregulation of O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) controls key signaling and metabolic pathways regulating diverse cancer cell phenotypes. This study showed that OGT expression levels in two human UCB cell models with acquired resistance to gemcitabine and paclitaxel were significantly upregulated compared with those in parental cells. Reducing hyper-O-GlcNAcylation by OGT knockdown (KD) markedly facilitated chemosensitivity to the corresponding chemotherapeutics in both cells, and combination treatment with OGT-KD showed more severe growth defects in chemoresistant sublines. We subsequently verified the suppressive effects of OGT-KD monotherapy on cell migration/invasion in vitro and xenograft tumor growth in vivo in chemoresistant UCB cells. Transcriptome analysis of these cells revealed 97 upregulated genes, which were enriched in multiple oncogenic pathways. Our final choice of suspected OGT glycosylation substrate was VCAN, S1PR3, PDGFRB, and PRKCG, the knockdown of which induced cell growth defects. These findings demonstrate the vital role of dysregulated OGT activity and hyper-O-GlcNAcylation in modulating treatment failure and tumor aggression in chemoresistant UCB.
Collapse
|
5
|
Cao L, Zhou Y, Li X, Lin S, Tan Z, Guan F. Integrating transcriptomics, proteomics, glycomics and glycoproteomics to characterize paclitaxel resistance in breast cancer cells. J Proteomics 2021; 243:104266. [PMID: 34000456 DOI: 10.1016/j.jprot.2021.104266] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/24/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022]
Abstract
Chemoresistance is a major factor driving breast cancer (BC) relapse and the high rates of cancer-related deaths. Aberrant levels of glycans are closely correlated with chemoresistance. The essential functions of glycans in chemoresistance is not systematically studied. In this study, an integrated strategy with a combination of transcriptomics, proteomics, glycomics and glycoproteomics was applied to explore the dysregulation of glycogenes, glycan structures and glycoproteins in chemoresistance of breast cancer cells. In paclitaxel (PTX) resistant MCF7 cells, 19 differentially expressed N-glycan-related proteins were identified, of which MGAT4A was the most significantly down-regulated, consistent with decrease in MGAT4A expression at mRNA level in PTX treated BC cells. Glycomic analysis consistently revealed suppressed levels of multi-antennary branching structures using MALDI-TOF/TOF-MS and lectin microarray. Several target glycoproteins bearing suppressed levels of multi-antennary branching structures were identified, and ERK signaling pathway was strongly suppressed in PTX resistant MCF7 cells. Our findings demonstrated the aberrant levels of multi-antennary branching structures and their target glycoproteins on PTX resistance. Systematically integrative multi-omic analysis is expected to facilitate the discovery of the aberrant glycosyltransferases, N-glycosylation and glycoproteins in tumor progression and chemoresistance. SIGNIFICANCE: An integrated strategy with a combination of transcriptomics, proteomics, glycomics and glycoproteomics is crucial to understand the association between glycans and chemoresistance in BC. In this multi-omic analysis, we identified unique glycan-related protein, glycan and glycoprotein signatures defining PTX chemoresistance in BC. This study might provide valuable information to understand molecular mechanisms underlying chemoresistance in BC.
Collapse
Affiliation(s)
- Lin Cao
- International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an 710069, PR China
| | - Yue Zhou
- International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an 710069, PR China; The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiang Li
- Institute of Hematology, School of Medicine, Northwest University, Xi'an 710069, PR China
| | - Shuai Lin
- Department of Oncology, The second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Zengqi Tan
- International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an 710069, PR China
| | - Feng Guan
- International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
6
|
Cong X, Liu X, Dong X, Fang S, Sun Z, Fan J. Silencing GnT-V reduces oxaliplatin chemosensitivity in human colorectal cancer cells through N-glycan alteration of organic cation transporter member 2. Exp Ther Med 2020; 21:128. [PMID: 33376510 PMCID: PMC7751481 DOI: 10.3892/etm.2020.9560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022] Open
Abstract
Organic cation transporter member 2 (OCT2) is an N-glycosylated transporter that has been shown to be closely associated with the transport of antitumor drugs. Oxaliplatin, a platinum-based drug, is used for the chemotherapy of colorectal cancer (CRC). However, oxaliplatin resistance is a major challenge in the treatment of advanced CRC. The aim of the present study was to better understand the mechanism underlying the chemosensitivity of CRC cells to oxaliplatin. The present study describes a potential novel strategy for enhancing oxaliplatin sensitivity involving the glycosylation of this drug transporter, specifically the modification of β-1,6-N-acetylglucosamine (GlcNAc) residues by N-acetylglucosaminyltransferase V (GnT-V). The results revealed that the downregulation of GnT-V inhibited the oxaliplatin chemosensitivity of CW-2 cells. Furthermore, the knockdown of GnT-V caused a marked reduction in the presence of β-1,6-GlcNAc structures on OCT2 and decreased the localization of OCT2 in the cytomembrane, which were associated with a reduced uptake of oxaliplatin in wild-type and oxaliplatin-resistant CW-2 cells. Overall, the study provides novel insights into the molecular mechanism by which GnT-V regulates the chemosensitivity to oxaliplatin, which involves the modulation of the drug transporter OCT2 by N-glycosylation in CRC cells.
Collapse
Affiliation(s)
- Xi Cong
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xingwan Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xiaopeng Dong
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Shuoshuo Fang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Zheng Sun
- Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Jianhui Fan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China.,Institute of Glycobiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
7
|
Taniguchi N, Ohkawa Y, Maeda K, Harada Y, Nagae M, Kizuka Y, Ihara H, Ikeda Y. True significance of N-acetylglucosaminyltransferases GnT-III, V and α1,6 fucosyltransferase in epithelial-mesenchymal transition and cancer. Mol Aspects Med 2020; 79:100905. [PMID: 33010941 DOI: 10.1016/j.mam.2020.100905] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
It is well known that numerous cancer-related changes occur in glycans that are attached to glycoproteins, glycolipids and proteoglycans on the cell surface and these changes in structure and the expression of the glycans are largely regulated by glycosyl-transferases, glycosidases, nucleotide sugars and their related genes. Such structural changes in glycans on cell surface proteins may accelerate the progression, invasion and metastasis of cancer cells. Among the over 200 known glycosyltransferases and related genes, β 1,6 N-acetylglucosaminyltransferase V (GnT-V) (the MGAT5 gene) and α 1,6 fucosyltransferase (FUT8) (the FUT8 gene) are representative enzymes in this respect because changes in glycans caused by these genes appear to be related to cancer metastasis and invasion in vitro as well as in vivo, and a number of reports on these genes in related to epithelial-mesenchymal transition (EMT) have also appeared. Another enzyme, one of the N-glycan branching enzymes, β1,4 N-acetylglucosaminyltransferase III (GnT-III) (the MGAT3 gene) has been reported to suppress EMT. However, there are intermediate states between EMT and mesenchymal-epithelial transition (MET) and some of these genes have been implicated in both EMT and MET and are also probably in an intermediate state. Therefore, it would be difficult to clearly define which specific glycosyltransferase is involved in EMT or MET or an intermediate state. The significance of EMT and N-glycan branching glycosyltransferases needs to be reconsidered and the inhibition of their corresponding genes would also be desirable in therapeutics. This review mainly focuses on GnT-III, GnT-V and FUT8, major players as N-glycan branching enzymes in cancer in relation to EMT programs, and also discusses the catalytic mechanisms of GnT-V and FUT8 whose crystal structures have now been obtained.
Collapse
Affiliation(s)
- Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| | - Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| | - Kento Maeda
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| | - Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| | - Masamichi Nagae
- Department of Molecular Immunology, RIMD, Osaka University, Osaka, Japan.
| | - Yasuhiko Kizuka
- Glyco-biochemistry Laboratory, G-Chain, Gifu University, Gifu, Japan.
| | - Hideyuki Ihara
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan.
| | - Yoshitaka Ikeda
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan.
| |
Collapse
|
8
|
Zhang X, Huang Z, Guo Y, Xiao T, Tang L, Zhao S, Wu L, Su J, Zeng W, Huang H, Li Z, Tao J, Zhou J, Chen X, Peng C. The phosphorylation of CD147 by Fyn plays a critical role for melanoma cells growth and metastasis. Oncogene 2020; 39:4183-4197. [PMID: 32291412 DOI: 10.1038/s41388-020-1287-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
Abstract
CD147, also known as extracellular matrix metalloproteinase inducer (EMMPRIN), is a transmembrane glycoprotein that is highly expressed in tumor cells, particularly melanoma cells, and plays critical roles in tumor cell metastasis through the regulation of matrix metalloprotease (MMP) expression. In this study, we identified Fyn as a novel interacting protein of CD147. Fyn is a member of the Src family of nonreceptor tyrosine kinases that regulates diverse physiological processes, such as T lymphocyte differentiation, through the TCR signaling pathway. Our findings demonstrated that Fyn directly phosphorylates CD147 at Y140 and Y183. Two phosphospecific antibodies against Y140 and Y183 were developed to validate the phosphorylation of CD147 by Fyn. Moreover, the CD147-FF (Y140F/Y183F) mutation impaired the interaction between CD147 and GnT-V, leading to decreased CD147 glycosylation and membrane recruitment. In addition, CD147-FF significantly blocked MMP-9 expression as well as cell migration. Moreover, we found that Fyn is overexpressed in clinical melanoma tissues as well as in melanoma cell lines. Knockdown of Fyn expression markedly attenuated the malignant phenotype of melanoma cells in vitro and in vivo through downregulation of CD147 phosphorylation, indicating that Fyn/CD147 is a potential target molecule in melanoma treatment. Finally, through virtual screening, we identified amodiaquine as a potential inhibitor targeting the Fyn/CD147 axis. Amodiaquine treatment dramatically inhibited the phosphorylation of CD147 by Fyn, thus attenuating melanoma cell growth and invasion in vitro and in vivo, suggesting that amodiaquine is a promising inhibitor for melanoma treatment.
Collapse
Affiliation(s)
- Xu Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yeye Guo
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ta Xiao
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Tang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuang Zhao
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lisha Wu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Su
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weiqi Zeng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongbin Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Zheng Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Tao
- Department of Dermatology, Affiliated Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianda Zhou
- Department of Plastic Surgery of Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Wu Y, Chen X, Wang S, Wang S. Advances in the relationship between glycosyltransferases and multidrug resistance in cancer. Clin Chim Acta 2019; 495:417-421. [PMID: 31102590 DOI: 10.1016/j.cca.2019.05.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 02/08/2023]
Abstract
Despite great progress in clinical treatment, cancer remains a serious health problem contributing to significant morbidity and mortality worldwide. Although chemotherapy is a common therapeutic measure, multidrug resistance (MDR) presents a major challenge that often leads to poor prognosis. The abnormal expression of glycosyltransferases (GTs) leading to aberrant glycosylation patterns are considered a marker of cancer. Furthermore, the biosynthesis of these glycoconjugates has been associated with tumor proliferation, invasion and metastasis. Recently, studies have found that GTs are involved in mediating MDR in cancer cells through complex mechanisms and can influence therapeutic effect. In this review, we focus on several types of cancers and summarize previous studies on the correlation between GTs and MDR.
Collapse
Affiliation(s)
- Yinshuang Wu
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, Liaoning, China
| | - Xixi Chen
- Department of Biological Sciences, School of Life Science and Medicine, Dalian University of Technology, Panjin, Liaoning, China
| | - Shidan Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, Liaoning, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|