2
|
Zhao C, Shi Q, Li H, Cui X, Xi Y, Cao Y, Xiang Z, Li F, Sun J, Liu J, Li T, Wei W, Xiong B, Li Z. Shape Designed Implanted Drug Delivery System for In Situ Hepatocellular Carcinoma Therapy. ACS NANO 2022; 16:8493-8503. [PMID: 35549172 DOI: 10.1021/acsnano.2c03768] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, an intelligent drug delivery system (DDS) based on implanted triboelectric nanogenerator (iTENG) and red blood cell (RBC) is established for in situ hepatocellular carcinoma (HCC) therapy. Apatinib (APA), as an oral antitumor drug, which can inhibit the expression of vascular endothelial growth factor receptor-2 (VEGFR2) is loaded inside RBC, realizing the transform from oral formulation to injection preparation. Multishape designed iTENG adapted for different implant sites and environments can harvest biomechanical energy efficiently. The electric field (EF) generated by the iTENG can increase the release of APA, and the release will decrease quickly when the EF disappears, which shows that the DDS is highly controllable. The controllable DDS demonstrates an exciting killing ability of HCC cells both in vitro and in vivo with strikingly reduced APA dosage. After implantation, the self-powered DDS has a prominent therapeutic effect of HCC-bearing rabbits, which is expected to be applied in clinical medicine.
Collapse
Affiliation(s)
- Chaochao Zhao
- Department of Biomedical Engineering, School of Medicine, Foshan University, Foshan 528225, China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Qin Shi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hu Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Xi Cui
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Xi
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Yu Cao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhuo Xiang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Feng Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinyan Sun
- Department of Biomedical Engineering, School of Medicine, Foshan University, Foshan 528225, China
| | - Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tongqiang Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Bin Xiong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhou Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Effect and molecular mechanism research of Astragalus membranaceus on inhibiting intestinal absorption of six alkaloids of Aconitum carmichaelii in spleen deficiency rats. CHINESE HERBAL MEDICINES 2021; 14:117-124. [PMID: 36120137 PMCID: PMC9476704 DOI: 10.1016/j.chmed.2021.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/29/2020] [Accepted: 02/25/2021] [Indexed: 01/30/2023] Open
Abstract
Objective To investigate the effect and the mechanism of Astragalus membranaceus (Huangqi in Chinese, HQ) extract on the intestinal absorption of six alkaloids of Aconitum carmichaelii (Fuzi in Chinese, FZ) in rats with spleen deficiency and provide novel insights into the application of HQ on modulating intestinal barrier. Methods Four-week-old male Sprague-Dawley rats were fed with Xiaochengqi Decoction to induce the spleen deficiency model for 40 d. Single-pass intestinal perfusion model were used to study the effects of HQ extract on the absorption of alkaloids. Protein expression and mRNA levels of MRP2 and BCRP and tight junction proteins (TJ, including Claudin-1, Occludin and ZO-1) were measured using Western blot and real-time PCR, respectively. The location and expression of TJ protein was also investigated by the immunofluorescence method. Results Compared with the normal group, the protein expression of MRP2, BCRP and TJ proteins in the model group were significantly down-regulated. After oral administration of HQ, the alkaloid absorption in intestinal villi was inhibited, MRP2, BCRP and TJ proteins were up-regulated, the green fluorescence staining of Claudin-1, Occludin, and ZO-1 was enhanced, and a thick layer of mucus was deposited on the surface of the epithelium of the intestinal cavity. Conclusion HQ as an intestinal barrier modulator improves the physiological changes of the intestinal environment of spleen deficiency to reduce the absorption of toxic components, leading to a decrease in the absorption of drug-like molecules.
Collapse
|
4
|
Gallo E, Rosa E, Diaferia C, Rossi F, Tesauro D, Accardo A. Systematic overview of soft materials as a novel frontier for MRI contrast agents. RSC Adv 2020; 10:27064-27080. [PMID: 35515779 PMCID: PMC9055484 DOI: 10.1039/d0ra03194a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/02/2020] [Indexed: 02/02/2023] Open
Abstract
Magnetic resonance imaging (MRI) is a well-known diagnostic technique used to obtain high quality images in a non-invasive manner. In order to increase the contrast between normal and pathological regions in the human body, positive (T1) or negative (T2) contrast agents (CAs) are commonly intravenously administered. The most efficient class of T1-CAs are based on kinetically stable and thermodynamically inert gadolinium complexes. In the last two decades many novel macro- and supramolecular CAs have been proposed. These approaches have been optimized to increase the performance of the CAs in terms of the relaxivity values and to reduce the administered dose, decreasing the toxicity and giving better safety and pharmacokinetic profiles. The improved performances may also allow further information to be gained on the pathological and physiological state of the human body. The goal of this review is to report a systematic overview of the nanostructurated CAs obtained and developed by manipulating soft materials at the nanometer scale. Specifically, our attention is centered on recent examples of fibers, hydrogels and nanogel formulations, that seem particularly promising for overcoming the problematic issues that have recently pushed the European Medicines Agency (EMA) to withdraw linear CAs from the market. Gd(iii)-nanostructurated Constrast Agents (CAs) for Magnetic Resonance Imaging (MRI) can be designed and developed by manipulating soft material, including fibers, hydrogels and nanogels, in the nanometer scale.![]()
Collapse
Affiliation(s)
- Enrico Gallo
- IRCCS SDN Via E. Gianturco 113 80143 Napoli Italy
| | - Elisabetta Rosa
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II" Via Mezzocannone 16 80134-Naples Italy
| | - Carlo Diaferia
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II" Via Mezzocannone 16 80134-Naples Italy
| | - Filomena Rossi
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II" Via Mezzocannone 16 80134-Naples Italy
| | - Diego Tesauro
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II" Via Mezzocannone 16 80134-Naples Italy
| | - Antonella Accardo
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II" Via Mezzocannone 16 80134-Naples Italy
| |
Collapse
|
5
|
Gao Z, Shi M, Wang Y, Chen J, Ou Y. Apatinib enhanced anti-tumor activity of cisplatin on triple-negative breast cancer through inhibition of VEGFR-2. Pathol Res Pract 2019; 215:152422. [PMID: 31079851 DOI: 10.1016/j.prp.2019.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/11/2019] [Accepted: 04/26/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) was known as a fast-growing and an aggressive tumor. Cisplatin is the effective cytotoxic drug used for the treatment of TNBC. In addition, apatinib, a VEGFR2 inhibitor, exhibits antitumor activity in patients with TNBC. However, the effects of combination of apatinib with cisplatin on TNBC remain unclear. Thus, this study aimed to investigate the effects of apatinib in combination with cisplatin on MDA-MB-231 cells. METHODS Immunohistochemistry was used to detect the expression of VEGFR2. In addition, CCK-8, flow cytometric, transwell assays were used to measure the cell proliferation, apoptosis, migration and invasion, respectively. Moreover, western blotting was used to detect the expressions of Bax, active caspase 3, p-VEGFR2, p-Akt and p-mTOR. RESULTS VEGFR2 was significantly upreguated in patients with TNBC. In addition, the inhibitory effects of cisplatin on the proliferation, migration and invasion of MDA-MB-231 cells were enhanced by apatinib. Moreover, apatinib increased cisplatin-induced apoptosis on MDA-MB-231 cells via increasing the level of Bax and active caspase 3 and decreasing the expression of Bcl-2. Importantly, apatinib enhanced anti-tumor effect of cisplatin on MDA-MB-231 cells via inhibiting the levels of p-VEGFR2, p-Akt and p-mTOR. CONCLUSION Our findings indicated that apatinib enhanced the anti-tumor effects of cisplatin on MDA-MB-231 cells via inhibition of VEGFR2. Thus, the combination of apatinib with cisplatin may serve as a potential approach in the treatment of patients with TNBC.
Collapse
Affiliation(s)
- Zhenyuan Gao
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, PR China.
| | - Mohan Shi
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, PR China.
| | - Yaping Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, PR China.
| | - Juan Chen
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, PR China.
| | - Yimei Ou
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, PR China.
| |
Collapse
|