1
|
Gittrich MR, Sanderson CM, Wainaina JM, Noel CM, Leopold JE, Babusci E, Selbes SC, Farinas OR, Caine J, Davis II J, Mutalik VK, Hyman P, Sullivan MB. Isolation and characterization of 24 phages infecting the plant growth-promoting rhizobacterium Klebsiella sp. M5al. PLoS One 2025; 20:e0313947. [PMID: 39982899 PMCID: PMC11845039 DOI: 10.1371/journal.pone.0313947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/03/2024] [Indexed: 02/23/2025] Open
Abstract
Bacteriophages largely impact bacterial communities via lysis, gene transfer, and metabolic reprogramming and thus are increasingly thought to alter nutrient and energy cycling across many of Earth's ecosystems. However, there are few model systems to mechanistically and quantitatively study phage-bacteria interactions, especially in soil systems. Here, we isolated, sequenced, and genomically characterized 24 novel phages infecting Klebsiella sp. M5al, a plant growth-promoting, nonencapsulated rhizosphere-associated bacterium, and compared many of their features against all 565 sequenced, dsDNA Klebsiella phage genomes. Taxonomic analyses revealed that these Klebsiella phages belong to three known phage families (Autographiviridae, Drexlerviridae, and Straboviridae) and two newly proposed phage families (Candidatus Mavericviridae and Ca. Rivulusviridae). At the phage family level, we found that core genes were often phage-centric proteins, such as structural proteins for the phage head and tail and DNA packaging proteins. In contrast, genes involved in transcription, translation, or hypothetical proteins were commonly not shared or flexible genes. Ecologically, we assessed the phages' ubiquity in recent large-scale metagenomic datasets, which revealed they were not widespread, as well as a possible direct role in reprogramming specific metabolisms during infection by screening their genomes for phage-encoded auxiliary metabolic genes (AMGs). Even though AMGs are common in the environmental literature, only one of our phage families, Straboviridae, contained AMGs, and the types of AMGs were correlated at the genus level. Host range phenotyping revealed the phages had a wide range of infectivity, infecting between 1-14 of our 22 bacterial strain panel that included pathogenic Klebsiella and Raoultella strains. This indicates that not all capsule-independent Klebsiella phages have broad host ranges. Together, these isolates, with corresponding genome, AMG, and host range analyses, help build the Klebsiella model system for studying phage-host interactions of rhizosphere-associated bacteria.
Collapse
Affiliation(s)
- Marissa R. Gittrich
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Courtney M. Sanderson
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, United States of America
| | - James M. Wainaina
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, United States of America
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Cara M. Noel
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Jonathan E. Leopold
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Erica Babusci
- School of the Environment and Natural Resources, The Ohio State University, Columbus, Ohio, United States of America
| | - Sumeyra C. Selbes
- Department of Psychology, The Ohio State University, Columbus, Ohio, United States of America
| | - Olivia R. Farinas
- College of Public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Jack Caine
- Department of Biology, Kenyon College, Gambier, Ohio, United States of America
| | - Joshua Davis II
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Vivek K. Mutalik
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Paul Hyman
- Department of Biology/Toxicology, Ashland University, Ashland, Ohio, United States of America
| | - Matthew B. Sullivan
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, United States of America
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
2
|
Altae-Tran H, Shmakov SA, Makarova KS, Wolf YI, Kannan S, Zhang F, Koonin EV. Diversity, evolution, and classification of the RNA-guided nucleases TnpB and Cas12. Proc Natl Acad Sci U S A 2023; 120:e2308224120. [PMID: 37983496 PMCID: PMC10691335 DOI: 10.1073/pnas.2308224120] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/19/2023] [Indexed: 11/22/2023] Open
Abstract
The TnpB proteins are transposon-associated RNA-guided nucleases that are among the most abundant proteins encoded in bacterial and archaeal genomes, but whose functions in the transposon life cycle remain unknown. TnpB appears to be the evolutionary ancestor of Cas12, the effector nuclease of type V CRISPR-Cas systems. We performed a comprehensive census of TnpBs in archaeal and bacterial genomes and constructed a phylogenetic tree on which we mapped various features of these proteins. In multiple branches of the tree, the catalytic site of the TnpB nuclease is rearranged, demonstrating structural and probably biochemical malleability of this enzyme. We identified numerous cases of apparent recruitment of TnpB for other functions of which the most common is the evolution of type V CRISPR-Cas effectors on about 50 independent occasions. In many other cases of more radical exaptation, the catalytic site of the TnpB nuclease is apparently inactivated, suggesting a regulatory function, whereas in others, the activity appears to be retained, indicating that the recruited TnpB functions as a nuclease, for example, as a toxin. These findings demonstrate remarkable evolutionary malleability of the TnpB scaffold and provide extensive opportunities for further exploration of RNA-guided biological systems as well as multiple applications.
Collapse
Affiliation(s)
- Han Altae-Tran
- HHMI, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Sergey A. Shmakov
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD20894
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD20894
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD20894
| | - Soumya Kannan
- HHMI, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Feng Zhang
- HHMI, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD20894
| |
Collapse
|
3
|
Han P, Fan H, Tong Y. Identification of a novel family B DNA polymerase from Enterococcus phage IME199 and its overproduction in Escherichia coli BL21(DE3). Microb Cell Fact 2023; 22:217. [PMID: 37865739 PMCID: PMC10590003 DOI: 10.1186/s12934-023-02228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND Identification and characterization of novel, faithful and processive DNA polymerases is a driving force in the development of DNA amplification methods. Purification of proteins from natural phages is often time-consuming, cumbersome and low yielding. Escherichia coli is a host bacterium widely used for the production of recombinant proteins, is the cell factory of choice for in vitro studies of phage protein function. RESULTS We expressed the gene encoding Enterococcus faecium phage IME199 DNA polymerase (IME199 DNAP) in Escherichia coli BL21(DE3), and characterized protein function. IME199 DNAP has 3'-5' exonuclease activity, but does not have 5'-3' exonuclease activity. In addition, IME199 DNAP has dNTP-dependent 5'-3' polymerase activity and can amplify DNA at 15-35 °C and a pH range of 5.5-9.5. The amino acid residues Asp30, Glu32, Asp112 and Asp251 are the 3'-5' exonuclease active sites of IME199 DNAP, while residues Asp596 and Tyr639 are essential for DNA synthesis by IME199 DNAP. More importantly, the IME199 DNAP has strand displacement and processive synthesis capabilities, and can perform rolling circle amplification and multiple displacement amplification with very low error rates (approximately 3.67 × 10-6). CONCLUSIONS A novel family B DNA polymerase was successfully overproduced in Escherichia coli BL21(DE3). Based on the characterized properties, IME199 DNAP is expected to be developed as a high-fidelity polymerase for DNA amplification at room temperature.
Collapse
Affiliation(s)
- Pengjun Han
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
4
|
Zabrady K, Li AWH, Doherty AJ. Mechanism of primer synthesis by Primase-Polymerases. Curr Opin Struct Biol 2023; 82:102652. [PMID: 37459807 DOI: 10.1016/j.sbi.2023.102652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/15/2023] [Accepted: 06/19/2023] [Indexed: 09/16/2023]
Abstract
Members of the primase-polymerase (Prim-Pol) superfamily are found in all domains of life and play diverse roles in genome stability, including primer synthesis during DNA replication, lesion repair and damage tolerance. This review focuses primarily on Prim-Pol members capable of de novo primer synthesis that have experimentally derived structural models available. We discuss the mechanism of DNA primer synthesis initiation by Prim-Pol catalytic domains, based on recent structural and functional studies. We also describe a general model for primer initiation that also includes the ancillary domains/subunits, which stimulate the initiation of primer synthesis.
Collapse
Affiliation(s)
- Katerina Zabrady
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK. https://twitter.com/@KZabrady
| | - Arthur W H Li
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Aidan J Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK.
| |
Collapse
|
5
|
Shao Z, Su S, Yang J, Zhang W, Gao Y, Zhao X, Zhang Y, Shao Q, Cao C, Li H, Liu H, Zhang J, Lin J, Ma J, Gan J. Structures and implications of the C962R protein of African swine fever virus. Nucleic Acids Res 2023; 51:9475-9490. [PMID: 37587714 PMCID: PMC10516667 DOI: 10.1093/nar/gkad677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/01/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023] Open
Abstract
African swine fever virus (ASFV) is highly contagious and can cause lethal disease in pigs. Although it has been extensively studied in the past, no vaccine or other useful treatment against ASFV is available. The genome of ASFV encodes more than 170 proteins, but the structures and functions for the majority of the proteins remain elusive, which hindered our understanding on the life cycle of ASFV and the development of ASFV-specific inhibitors. Here, we report the structural and biochemical studies of the highly conserved C962R protein of ASFV, showing that C962R is a multidomain protein. The N-terminal AEP domain is responsible for the DNA polymerization activity, whereas the DNA unwinding activity is catalyzed by the central SF3 helicase domain. The middle PriCT2 and D5_N domains and the C-terminal Tail domain all contribute to the DNA unwinding activity of C962R. C962R preferentially works on forked DNA, and likely functions in Base-excision repair (BER) or other repair pathway in ASFV. Although it is not essential for the replication of ASFV, C962R can serve as a model and provide mechanistic insight into the replicative primase proteins from many other species, such as nitratiruptor phage NrS-1, vaccinia virus (VACV) and other viruses.
Collapse
Affiliation(s)
- Zhiwei Shao
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shichen Su
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jie Yang
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Weizhen Zhang
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yanqing Gao
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xin Zhao
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yixi Zhang
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qiyuan Shao
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chulei Cao
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Huili Li
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hehua Liu
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jinru Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jianhua Gan
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
6
|
Morcinek-Orłowska J, Zdrojewska K, Węgrzyn A. Bacteriophage-Encoded DNA Polymerases-Beyond the Traditional View of Polymerase Activities. Int J Mol Sci 2022; 23:635. [PMID: 35054821 PMCID: PMC8775771 DOI: 10.3390/ijms23020635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
DNA polymerases are enzymes capable of synthesizing DNA. They are involved in replication of genomes of all cellular organisms as well as in processes of DNA repair and genetic recombination. However, DNA polymerases can also be encoded by viruses, including bacteriophages, and such enzymes are involved in viral DNA replication. DNA synthesizing enzymes are grouped in several families according to their structures and functions. Nevertheless, there are examples of bacteriophage-encoded DNA polymerases which are significantly different from other known enzymes capable of catalyzing synthesis of DNA. These differences are both structural and functional, indicating a huge biodiversity of bacteriophages and specific properties of their enzymes which had to evolve under certain conditions, selecting unusual properties of the enzymes which are nonetheless crucial for survival of these viruses, propagating as special kinds of obligatory parasites. In this review, we present a brief overview on DNA polymerases, and then we discuss unusual properties of different bacteriophage-encoded enzymes, such as those able to initiate DNA synthesis using the protein-priming mechanisms or even start this process without any primer, as well as able to incorporate untypical nucleotides. Apart from being extremely interesting examples of biochemical biodiversity, bacteriophage-encoded DNA polymerases can also be useful tools in genetic engineering and biotechnology.
Collapse
Affiliation(s)
- Joanna Morcinek-Orłowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (J.M.-O.); (K.Z.)
| | - Karolina Zdrojewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (J.M.-O.); (K.Z.)
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland
| |
Collapse
|
7
|
Bebel A, Walsh MA, Mir-Sanchis I, Rice PA. A novel DNA primase-helicase pair encoded by SCC mec elements. eLife 2020; 9:55478. [PMID: 32945259 PMCID: PMC7581432 DOI: 10.7554/elife.55478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 09/17/2020] [Indexed: 01/18/2023] Open
Abstract
Mobile genetic elements (MGEs) are a rich source of new enzymes, and conversely, understanding the activities of MGE-encoded proteins can elucidate MGE function. Here, we biochemically characterize three proteins encoded by a conserved operon carried by the Staphylococcal Cassette Chromosome (SCCmec), an MGE that confers methicillin resistance to Staphylococcus aureus, creating MRSA strains. The first of these proteins, CCPol, is an active A-family DNA polymerase. The middle protein, MP, binds tightly to CCPol and confers upon it the ability to synthesize DNA primers de novo. The CCPol-MP complex is therefore a unique primase-polymerase enzyme unrelated to either known primase family. The third protein, Cch2, is a 3’-to-5’ helicase. Cch2 additionally binds specifically to a dsDNA sequence downstream of its gene that is also a preferred initiation site for priming by CCPol-MP. Taken together, our results suggest that this is a functional replication module for SCCmec.
Collapse
Affiliation(s)
- Aleksandra Bebel
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Melissa A Walsh
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Ignacio Mir-Sanchis
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| |
Collapse
|
8
|
Chen X, Su S, Chen Y, Gao Y, Li Y, Shao Z, Zhang Y, Shao Q, Liu H, Li J, Ma J, Gan J. Structural studies reveal a ring-shaped architecture of deep-sea vent phage NrS-1 polymerase. Nucleic Acids Res 2020; 48:3343-3355. [PMID: 32016421 PMCID: PMC7102993 DOI: 10.1093/nar/gkaa071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 11/23/2022] Open
Abstract
NrS-1 is the first known phage that can infect Epsilonproteobacteria, one of the predominant primary producers in the deep-sea hydrothermal vent ecosystems. NrS-1 polymerase is a multidomain enzyme and is one key component of the phage replisome. The N-terminal Prim/Pol and HBD domains are responsible for DNA polymerization and de novo primer synthesis activities of NrS-1 polymerase. However, the structure and function of the C-terminus (CTR) of NrS-1 polymerase are poorly understood. Here, we report two crystal structures, showing that NrS-1 CTR adopts one unique hexameric ring-shaped conformation. Although the central helicase domain of NrS-1 CTR shares structural similarity with the superfamily III helicases, the folds of the Head and Tail domains are completely novel. Via mutagenesis and in vitro biochemical analysis, we identified many residues important for the helicase and polymerization activities of NrS-1 polymerase. In addition to NrS-1 polymerase, our study may also help us identify and understand the functions of multidomain polymerases expressed by many NrS-1 related phages.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai 200438, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shichen Su
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yiqing Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yanqing Gao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yangyang Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhiwei Shao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yixi Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qiyuan Shao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hehua Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
9
|
Crystal structures of phage NrS-1 N300-dNTPs-Mg 2+ complex provide molecular mechanisms for substrate specificity. Biochem Biophys Res Commun 2019; 515:551-557. [PMID: 31176489 DOI: 10.1016/j.bbrc.2019.05.162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 12/18/2022]
Abstract
A novel DNA polymerase from the deep-sea vent phage NrS-1, was characterized as a primase-polymerase (referred to as prim-pol), which works as a self-priming DNA polymerase to synthesize de novo long DNA strands. Functional research on the NrS-1 prim-pol illustrated that the N-terminal 300 residues (referred to as N300) have de novo synthesis activity similar to that of the full-length enzyme. Just like other prim-pols, NrS-1 prim-pol was able to initiate DNA synthesis, proficiently discriminating against ribonucleotides (NTPs), exclusively using deoxynucleotides (dNTPs). However, the structural basis for this discrimination is not well understood. Here, the three kinds of crystal structures of N300-dNTPs-Mg2+ complex were determined. These complex structures shared the identical steric architecture and hydrogen-bond interactions in the catalytic center. The results of biochemical studies indicated that R145 possibly plays an indispensable role in the primer extension. Mutagenesis and structural simulation showed that the backbone carboxyl group of Y146, as a potential sugar selector, was involved in steric clashing with the incoming 2'-OH group of NTPs. However, the mechanism of substrate discrimination probably was different from that of other prim-pols, according to the structural analyses and sequence comparison.
Collapse
|