Long-term association of a transcription factor with its chromatin binding site can stabilize gene expression and cell fate commitment.
Proc Natl Acad Sci U S A 2020;
117:15075-15084. [PMID:
32532919 PMCID:
PMC7334453 DOI:
10.1073/pnas.2000467117]
[Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Some kinds of transcription factor proteins are very important in initiating and guiding cell fate differentiation. Overexpression of these factors can force many other kinds of cells to become muscle or nerve. Examples are MyoD for muscle and Ascl1 for nerve. It is not known how long such a factor must remain bound to its binding site for it to have its function; this could be seconds, minutes, hours, or days. We have developed a procedure to determine the required residence time for the Ascl1 nerve factor to have its function. This factor remains closely associated with its chromatin binding site for hours or days. This may be a general characteristic of such factors in nondividing (adult) cells.
Some lineage-determining transcription factors are overwhelmingly important in directing embryonic cells to a particular differentiation pathway, such as Ascl1 for nerve. They also have an exceptionally strong ability to force cells to change from an unrelated pathway to one preferred by their action. Transcription factors are believed to have a very short residence time of only a few seconds on their specific DNA or chromatin-binding sites. We have developed a procedure in which DNA containing one copy of the binding site for the neural-inducing factor Ascl1 is injected directly into a Xenopus oocyte nucleus which has been preloaded with a limiting amount of the Ascl1 transcription factor protein. This is followed by a further injection of DNA as a competitor, either in a plasmid or in chromosomal DNA, containing the same binding site but with a different reporter. Importantly, expression of the reporter provides a measure of the function of the transcription factor in addition to its residence time. The same long residence time and resistance to competition are seen with the estrogen receptor and its DNA response elements. We find that in this nondividing oocyte, the nerve-inducing factor Ascl1 can remain bound to a specific chromatin site for hours or days and thereby help to stabilize gene expression. This stability of transcription factor binding to chromatin is a necessary part of its action because removal of this factor causes discontinuation of its effect on gene expression. Stable transcription factor binding may be a characteristic of nondividing cells.
Collapse