1
|
Wang K, Ueno M. The losses of Lem2 and Bqt4 exhibit similar impacts on intracellular movement dynamics in fission yeast. Biochem Biophys Res Commun 2025; 749:151326. [PMID: 39892963 DOI: 10.1016/j.bbrc.2025.151326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/12/2025] [Indexed: 02/04/2025]
Abstract
Quantifying movement dynamics inside a cell provides a deeper understanding of cellular functions. The 3-dimensional live observation has been widely applied to movement dynamics research. Fission yeast is an ideal model organism for studying cellular movement dynamics. In this study, we developed a novel method to quantify intracellular movement in wild-type cells, using a vector originating from the cell center as the movement reference. This method obtained more movement information, including movement direction, compared to the previously reported method, which used a single point as the movement reference. Using this new method, we quantified intracellular movement in wild type, bqt4Δ, and lem2Δ cells across various parameters. We characterized the nature of intracellular movement in wild-type cells and revealed that the losses of Bqt4 and Lem2, two inner membrane proteins, impact intracellular movement in a similar pattern, although distinct differences were also observed. These findings offer new insights into the study of the overlapping and distinct functions of Bqt4 and Lem2. This study provides a novel method for evaluating the intracellular movement dynamics, contributing to the understanding of intracellular movement nature, biophysical properties, and the evaluation of genes or proteins from an intracellular movement perspective.
Collapse
Affiliation(s)
- Kaiyu Wang
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Masaru Ueno
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan.
| |
Collapse
|
2
|
Wang K, Seol H, Emami P, Nagai H, Ueno M. 3,3'-Diindolylmethane disrupts the endoplasmic reticulum and nuclear envelope in Schizosaccharomyces pombe. Biochem Biophys Res Commun 2024; 733:150724. [PMID: 39332155 DOI: 10.1016/j.bbrc.2024.150724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
3,3'-Diindolylmethane is recognized for its anti-cancer activities in various pathways, though its mechanism remains to be fully elucidated. Previous studies have shown that 3,3'-Diindolylmethane disturbed the localization of Cut11, a nuclear pore complex subunit in Schizosaccharomyces pombe. This study further reveals that in Schizosaccharomyces pombe, 3,3'-Diindolylmethane also disrupts other components of nuclear envelope, causing GFP-NLS leakage, making it evident that 3,3'-Diindolylmethane disrupts the nuclear envelope. 3,3'-Diindolylmethane also disturbs the localization of GFP-ADEL and Ost4, which are endoplasmic reticulum lumen proteins and membrane proteins respectively, suggesting the function of 3,3'-Diindolylmethane on endoplasmic reticulum disturbance. The nuclear envelope repairment, normal nuclear envelope physical properties, and lipid metabolism homeostasis are crucial for cell survival in the presence of 3,3'-Diindolylmethane. These findings provide new insights into the understanding and development of 3,3'-Diindolylmethane as an anti-cancer agent.
Collapse
Affiliation(s)
- Kaiyu Wang
- Graduate School of Integrated Sciences for Life, Hiroshima University, Japan
| | - Hyekyung Seol
- Cluster III of Faculty of Engineering, Hiroshima University, Japan
| | - Parvaneh Emami
- Graduate School of Integrated Sciences for Life, Hiroshima University, Japan
| | - Hideto Nagai
- Cluster III of Faculty of Engineering, Hiroshima University, Japan
| | - Masaru Ueno
- Graduate School of Integrated Sciences for Life, Hiroshima University, Japan; Cluster III of Faculty of Engineering, Hiroshima University, Japan.
| |
Collapse
|
3
|
Wang K, Ito H, Kanoh J, Ueno M. Bqt4 affects relative movement between SPB and nucleolus in fission yeast. Biochem Biophys Res Commun 2024; 714:149970. [PMID: 38663097 DOI: 10.1016/j.bbrc.2024.149970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Movement dynamics in the nucleus involve various biological processes, including DNA repair, which is crucial for cancer prevention. Changes in the movement of the components of the nucleus indicate the changes in movement dynamics in the nucleus. In Schizosaccharomyces pombe, the inner nuclear membrane protein Bqt4 plays an essential role in attaching telomeres to the nuclear envelope. We observed that the deletion of bqt4+ caused a significant decrease in the mean square displacement (MSD) calculated from the distance between the nucleolar center and spindle pole body (SPB), hereafter referred to as MSD(SPB-Nucleolus). The MSD(SPB-Nucleolus) decrease in bqt4Δ was microtubule-dependent. The Rap1-binding ability loss mutant, bqt4F46A, and nonspecific DNA-binding ability mutants, bqt43E-A, did not exhibit an MSD(SPB-Nucleolus) decrease compared to the WT. Moreover, the bqt43E-Arap1Δ double mutant and 1-262 amino acids truncated mutant bqt4ΔN (263-432), which does not have either Rap1-binding or nonspecific DNA-binding abilities, did not exhibit the MSD(SPB-Nucleolus) decrease to the same extent as bqt4Δ. These results suggest that the unknown function of Bqt4 in the C-terminal domain is essential for the maintenance of the pattern of relative movement between SPB and the nucleolus.
Collapse
Affiliation(s)
- Kaiyu Wang
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | - Hiroaki Ito
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | - Junko Kanoh
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Masaru Ueno
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan; Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima 739-8530, Japan.
| |
Collapse
|
4
|
Kanoh Y, Ueno M, Hayano M, Kudo S, Masai H. Aberrant association of chromatin with nuclear periphery induced by Rif1 leads to mitotic defect. Life Sci Alliance 2023; 6:e202201603. [PMID: 36750367 PMCID: PMC9909590 DOI: 10.26508/lsa.202201603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
The architecture and nuclear location of chromosomes affect chromatin events. Rif1, a crucial regulator of replication timing, recognizes G-quadruplex and inhibits origin firing over the 50-100-kb segment in fission yeast, Schizosaccharomyces pombe, leading us to postulate that Rif1 may generate chromatin higher order structures inhibitory for initiation. However, the effects of Rif1 on chromatin localization in nuclei have not been known. We show here that Rif1 overexpression causes growth inhibition and eventually, cell death in fission yeast. Chromatin-binding activity of Rif1, but not recruitment of phosphatase PP1, is required for growth inhibition. Overexpression of a PP1-binding site mutant of Rif1 does not delay the S-phase, but still causes cell death, indicating that cell death is caused not by S-phase problems but by issues in other phases of the cell cycle, most likely the M-phase. Indeed, Rif1 overexpression generates cells with unequally segregated chromosomes. Rif1 overexpression relocates chromatin near nuclear periphery in a manner dependent on its chromatin-binding ability, and this correlates with growth inhibition. Thus, coordinated progression of S- and M-phases may require regulated Rif1-mediated chromatin association with the nuclear periphery.
Collapse
Affiliation(s)
- Yutaka Kanoh
- Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masaru Ueno
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Motoshi Hayano
- Department of Neuropsychiatry, Keio University, Tokyo, Japan
| | - Satomi Kudo
- Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hisao Masai
- Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
5
|
Emami P, Ueno M. 3,3'-Diindolylmethane induces apoptosis and autophagy in fission yeast. PLoS One 2021; 16:e0255758. [PMID: 34890395 PMCID: PMC8664220 DOI: 10.1371/journal.pone.0255758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/25/2021] [Indexed: 01/26/2023] Open
Abstract
3,3'-Diindolylmethane (DIM) is a compound derived from the digestion of indole-3-carbinol, found in the broccoli family. It induces apoptosis and autophagy in some types of human cancer. DIM extends lifespan in the fission yeast Schizosaccharomyces pombe. The mechanisms by which DIM induces apoptosis and autophagy in humans and expands lifespan in fission yeasts are not fully understood. Here, we show that DIM induces apoptosis and autophagy in log-phase cells, which is dose-dependent in fission yeast. A high concentration of DIM disrupted the nuclear envelope (NE) structure and induced chromosome condensation at an early time point. In contrast, a low concentration of DIM induced autophagy but did not disrupt NE structure. The mutant defective in autophagy was more sensitive to a low concentration of DIM, demonstrating that the autophagic pathway contributes to the survival of cells against DIM. Moreover, our results showed that the lem2 mutant is more sensitive to DIM. NE in the lem2 mutant was disrupted even at the low concentration of DIM. Our results demonstrate that the autophagic pathway and NE integrity are important to maintain viability in the presence of a low concentration of DIM. The mechanism of apoptosis and autophagy induction by DIM might be conserved in fission yeast and humans. Further studies will contribute to the understanding of the mechanism of apoptosis and autophagy by DIM in fission yeast and humans.
Collapse
Affiliation(s)
- Parvaneh Emami
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Masaru Ueno
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
6
|
Takaine M. QUEEN-based Spatiotemporal ATP Imaging in Budding and Fission Yeast. Bio Protoc 2019; 9:e3320. [PMID: 33654827 DOI: 10.21769/bioprotoc.3320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/28/2019] [Accepted: 07/28/2019] [Indexed: 01/07/2023] Open
Abstract
Yeasts have provided an exceptional model for studying metabolism and bioenergetics in eukaryotic cells. Among numerous metabolites, adenosine triphosphate (ATP) is a major metabolite that is essential for all living organisms. Therefore, a clearer understanding of ATP dynamics in living yeast cells is important for deciphering cellular energy metabolism. However, none of the methods currently available to measure ATP, including biochemical analyses and ATP indicators, have been suitable for close examinations of ATP concentrations in yeast cells at the single cell level. Using the recently developed ATP biosensor QUEEN, which is suitable for yeasts and bacteria, a protocol was described herein to visualize ATP concentrations in living budding and fission yeast cells. This simple method enables the easy and reliable examination of ATP dynamics in various yeast mutants, thereby providing novel molecular insights into cellular energy metabolism.
Collapse
Affiliation(s)
- Masak Takaine
- Division of Endocrinology, Metabolism and Signal Research, Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi 371-8512, Japan.,Division of Cellular Signaling, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
| |
Collapse
|
7
|
Takaine M, Ueno M, Kitamura K, Imamura H, Yoshida S. Reliable imaging of ATP in living budding and fission yeast. J Cell Sci 2019; 132:jcs.230649. [PMID: 30858198 DOI: 10.1242/jcs.230649] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/04/2019] [Indexed: 01/12/2023] Open
Abstract
Adenosine triphosphate (ATP) is a main metabolite essential for all living organisms. However, our understanding of ATP dynamics within a single living cell is very limited. Here, we optimized the ATP-biosensor QUEEN and monitored the dynamics of ATP with good spatial and temporal resolution in living yeasts. We found stable maintenance of ATP concentration in wild-type yeasts, regardless of carbon sources or cell cycle stages, suggesting that mechanism exists to maintain ATP at a specific concentration. We further found that ATP concentration is not necessarily an indicator of metabolic activity, as there is no clear correlation between ATP level and growth rates. During fission yeast meiosis, we found a reduction in ATP levels, suggesting that ATP homeostasis is controlled by differentiation. The use of QUEEN in yeasts offers an easy and reliable assay for ATP dynamicity and will answer several unaddressed questions about cellular metabolism in eukaryotes.
Collapse
Affiliation(s)
- Masak Takaine
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi 371-8512, Japan .,Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan
| | - Masaru Ueno
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Japan.,Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Japan
| | - Kenji Kitamura
- Center for Gene Science, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Hiromi Imamura
- Department of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Satoshi Yoshida
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi 371-8512, Japan .,Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi 371-8512, Japan.,School of International Liberal Studies, Waseda University, Tokyo, 169-8050, Japan.,Japan Science and Technology Agency, PREST
| |
Collapse
|