1
|
Liu J, Lin X, Wang X, Feng L, Zhu S, Tian R, Fang J, Tao A, Fang P, Qi J, Zhang L, Huang Y, Xu J. Genomic and cytogenetic analyses reveal satellite repeat signature in allotetraploid okra (Abelmoschus esculentus). BMC PLANT BIOLOGY 2024; 24:71. [PMID: 38267860 PMCID: PMC10809672 DOI: 10.1186/s12870-024-04739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Satellite repeats are one of the most rapidly evolving components in eukaryotic genomes and play vital roles in genome regulation, genome evolution, and speciation. As a consequence, the composition, abundance and chromosome distribution of satellite repeats often exhibit variability across various species, genome, and even individual chromosomes. However, we know little about the satellite repeat evolution in allopolyploid genomes. RESULTS In this study, we investigated the satellite repeat signature in five okra (Abelmoschus esculentus) accessions using genomic and cytogenetic methods. In each of the five accessions, we identified eight satellite repeats, which exhibited a significant level of intraspecific conservation. Through fluorescence in situ hybridization (FISH) experiments, we observed that the satellite repeats generated multiple signals and exhibited variations in copy number across chromosomes. Intriguingly, we found that five satellite repeats were interspersed with centromeric retrotransposons, signifying their involvement in centromeric satellite repeat identity. We confirmed subgenome-biased amplification patterns of these satellite repeats through existing genome assemblies or dual-color FISH, indicating their distinct dynamic evolution in the allotetraploid okra subgenome. Moreover, we observed the presence of multiple chromosomes harboring the 35 S rDNA loci, alongside another chromosomal pair carrying the 5 S rDNA loci in okra using FISH assay. Remarkably, the intensity of 35 S rDNA hybridization signals varied among chromosomes, with the signals predominantly localized within regions of relatively weak DAPI staining, associated with GC-rich heterochromatin regions. Finally, we observed a similar localization pattern between 35 S rDNA and three satellite repeats with high GC content and confirmed their origin in the intergenic spacer region of the 35 S rDNA. CONCLUSIONS Our findings uncover a unique satellite repeat signature in the allotetraploid okra, contributing to our understanding of the composition, abundance, and chromosomal distribution of satellite repeats in allopolyploid genomes, further enriching our understanding of their evolutionary dynamics in complex allopolyploid genomes.
Collapse
Affiliation(s)
- Jiarui Liu
- Scientific Observing and Experimental Station of Southeastern kenaf & jute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinyi Lin
- Scientific Observing and Experimental Station of Southeastern kenaf & jute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaojie Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liqing Feng
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Shixin Zhu
- Scientific Observing and Experimental Station of Southeastern kenaf & jute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Runmeng Tian
- Scientific Observing and Experimental Station of Southeastern kenaf & jute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingping Fang
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Aifen Tao
- Scientific Observing and Experimental Station of Southeastern kenaf & jute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Pingping Fang
- Scientific Observing and Experimental Station of Southeastern kenaf & jute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianmin Qi
- Scientific Observing and Experimental Station of Southeastern kenaf & jute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liwu Zhang
- Scientific Observing and Experimental Station of Southeastern kenaf & jute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongji Huang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
| | - Jiantang Xu
- Scientific Observing and Experimental Station of Southeastern kenaf & jute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Nyaku ST, Karapareddy S, Cebert E, Lawrence K, Eleblu JSY, Sharma GC, Sripathi VR. Two Intra-Individual ITS1 rDNA Sequence Variants Identified in the Female and Male Rotylenchulus reniformis Populations of Alabama. PLANTS (BASEL, SWITZERLAND) 2023; 13:5. [PMID: 38202313 PMCID: PMC10780758 DOI: 10.3390/plants13010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Around 300 different plant species are infected by the plant-parasitic reniform nematode (Rotylenchulus reniformis), including cotton. This is a devasting nematode with a preference for cotton; it is commonly found in Alabama farms and causes severe reduction in yields. Its first internal transcribed spacer (ITS1) region can be sequenced, and potential mutations can be found in order to study the population dynamics of the reniform nematode. The goal of our study was to sequence the ITS1 rDNA region in male and female RNs that were collected from BelleMina, Hamilton, and Lamons locations in Alabama. After separating the single male and female RNs from the samples collected from the three selected listed sites above, the ITS1 region was amplified selectively using specific primers, and the resulting products were cloned and sequenced. Two distinct bands were observed after DNA amplification of male and female nematodes at 550 bp and 730 bp, respectively. The analysis of sequenced fragments among the three populations showed variation in average nucleotide frequencies of female and male RNs. Singletons within the female and male Hamilton populations ranged from 7.8% to 10%, and the variable sites ranged from 13.4% to 26%. However, female and male BelleMina populations had singletons ranging from 7.1% to 19.7% and variable regions in the range of 13.9% to 49.3%. The female and male Lamons populations had singletons ranging from 2.5% to 8.7% and variable regions in the range of 2.9% to 14.2%. Phylogenetic (neighbor-joining) analysis for the two ITS1 fragments (ITS-550 and ITS-730) showed relatively high intra-nematode variability. Different clone sequences from an individual nematode often had greater similarity with other nematodes than with their own sequences. RNA fold analysis of the ITS1 sequences revealed varied stem and loop structures, suggesting both conserved and variable regions in the variants identified from female and male RNs, thus underscoring the presence of significant intra- and inter-nematodal variation among RN populations in Alabama.
Collapse
Affiliation(s)
- Seloame T. Nyaku
- Department of Crop Science, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 44, Ghana;
| | - Sowndarya Karapareddy
- Department of Biological and Environmental Sciences, Alabama A&M University, Huntsville, AL 35811, USA (G.C.S.)
| | - Ernst Cebert
- Department of Biological and Environmental Sciences, Alabama A&M University, Huntsville, AL 35811, USA (G.C.S.)
| | - Kathy Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA;
| | - John S. Y. Eleblu
- West Africa Centre for Crop Improvement, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 30, Ghana
| | - Govind C. Sharma
- Department of Biological and Environmental Sciences, Alabama A&M University, Huntsville, AL 35811, USA (G.C.S.)
| | - Venkateswara R. Sripathi
- Department of Biological and Environmental Sciences, Alabama A&M University, Huntsville, AL 35811, USA (G.C.S.)
| |
Collapse
|
4
|
Gong L, Shi W, Yang M, Luo H. Variations in the conserved 18S and 5.8S reveal the putative pseudogenes in 18S-ITS1-5.8S rDNA of Cynoglossus melampetalus (Pleuronectiformes: Cynoglossidae). Biochem Biophys Res Commun 2020; 534:233-239. [PMID: 33276952 DOI: 10.1016/j.bbrc.2020.11.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 11/26/2022]
Abstract
Many early studies of ribosomal RNA gene (rDNA) suggested that rDNA tandem repeats within species are homogeneous. However, increasing number of reports have found intra-individual rDNA polymorphism across a range of taxa. Here, we reported a high level of intra-individual polymorphism of 18S-ITS1-5.8S rDNA in the genome of Cynoglossus melampetalus (Pleuronectiformes: Cynoglossidae), indicating a non-concerted evolution manner. Sequence alignments found two distinct types of 18S and 5.8S (Type A and B) and five types of ITS1 sequence (Type A - E) coexisted in the genome differing in length, GC content, secondary structure stability and minimum free energy. Based on the unique features of pseudogene and comparison of the conserved 18S rDNA sequence and 5.8S secondary structure of 22 flatfishes revealed that Type B sequences of 18S, 5.8S and their linked ITS1 were putative pseudogenes. So far, detection of rRNA pseudogenes from the multiple rDNA copies has been an intricate puzzle. Our results, as a result, provide a new ideal for rRNA pseudogene identification.
Collapse
Affiliation(s)
- Li Gong
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, 316022, Zhoushan, China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, 530007, China.
| | - Wei Shi
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, China
| | - Min Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, China
| | - Hairong Luo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, China
| |
Collapse
|