1
|
Yuan F, Bai K, Hou Y, Zou X, Sun J. Small Molecule Cocktails Promote Fibroblast-to-Leydig-like Cell Conversion for Hypogonadism Therapy. Pharmaceutics 2023; 15:2456. [PMID: 37896216 PMCID: PMC10610100 DOI: 10.3390/pharmaceutics15102456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Male hypogonadism arises from the inadequate production of testosterone (T) by the testes, primarily due to Leydig cell (LC) dysfunction. Small molecules possess several advantages, including high cell permeability, ease of synthesis, standardization, and low effective concentration. Recent investigations have illuminated the potential of small molecule combinations to facilitate direct lineage reprogramming, removing the need for transgenes by modulating cellular signaling pathways and epigenetic modifications. In this study, we have identified a specific cocktail of small molecules, comprising forskolin, DAPT, purmorphamine, 8-Br-cAMP, 20α-hydroxycholesterol, and SAG, capable of promoting the conversion of fibroblasts into Leydig-like cells (LLCs). These LLCs expressed key genes involved in testosterone synthesis, such as Star, Cyp11a1, and Hsd3b1, and exhibited the ability to secrete testosterone in vitro. Furthermore, they successfully restored serum testosterone levels in testosterone-castrated mice in vivo. The small molecule cocktails also induced alterations in the epigenetic marks, specifically H3K4me3, and enhanced chromosomal accessibility on core steroidogenesis genes. This study presents a reliable methodology for generating Leydig-like seed cells that holds promise as a novel therapeutic approach for hypogonadism.
Collapse
Affiliation(s)
| | | | | | | | - Jie Sun
- Department of Urology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University of Medicine, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China; (F.Y.); (K.B.); (Y.H.); (X.Z.)
| |
Collapse
|
2
|
Rey RA. Recent advancement in the treatment of boys and adolescents with hypogonadism. Ther Adv Endocrinol Metab 2022; 13:20420188211065660. [PMID: 35035874 PMCID: PMC8753232 DOI: 10.1177/20420188211065660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
Clinical manifestations and the need for treatment varies according to age in males with hypogonadism. Early foetal-onset hypogonadism results in disorders of sex development (DSD) presenting with undervirilised genitalia whereas hypogonadism established later in foetal life presents with micropenis, cryptorchidism and/or micro-orchidism. After the period of neonatal activation of the gonadal axis has waned, the diagnosis of hypogonadism is challenging because androgen deficiency is not apparent until the age of puberty. Then, the differential diagnosis between constitutional delay of puberty and central hypogonadism may be difficult. During infancy and childhood, treatment is usually sought because of micropenis and/or cryptorchidism, whereas lack of pubertal development and relative short stature are the main complaints in teenagers. Testosterone therapy has been the standard, although off-label, in the vast majority of cases. However, more recently alternative therapies have been tested: aromatase inhibitors to induce the hypothalamic-pituitary-testicular axis in boys with constitutional delay of puberty and replacement with GnRH or gonadotrophins in those with central hypogonadism. Furthermore, follicle-stimulating hormone (FSH) priming prior to hCG or luteinizing hormone (LH) treatment seems effective to induce an enhanced testicular enlargement. Although the rationale for gonadotrophin or GnRH treatment is based on mimicking normal physiology, long-term results are still needed to assess their impact on adult fertility.
Collapse
Affiliation(s)
- Rodolfo A. Rey
- Rodolfo A. Rey Centro de Investigaciones
Endocrinológicas ‘Dr. César Bergadá’ (CEDIE), CONICET – FEI – División de
Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, Gallo 1330, C1425EFD
Buenos Aires, Argentina
| |
Collapse
|
3
|
Wang X, Xue CH, Yang D, Jia ST, Ding YR, Lei L, Gao KY, Jia TT. Modification of a nitrocellulose membrane with nanofibers for sensitivity enhancement in lateral flow test strips. RSC Adv 2021; 11:26493-26501. [PMID: 35479983 PMCID: PMC9037416 DOI: 10.1039/d1ra04369b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/23/2021] [Indexed: 01/16/2023] Open
Abstract
Lateral-flow analysis (LFA) is a convenient, low-cost, and rapid detection method, which has been widely used for screening of diseases. However, sensitivity enhancement in LFA is still a focus in this field and remains challenging. Herein, we propose an electrospinning coating method to modify the conventional nitrocellulose (NC) membrane and optimize the liquid flow rate for enhancing the sensitivity of the NC based LFA strips in the detection of human chorionic gonadotropin (HCG) and luteinizing hormone (LH). It can be seen that coating the NC membrane with nitrocellulose fibers could obtain a NC based strip with HCG and LH detection limits of 0.22 and 0.36 mIU mL-1 respectively, and a quantitative linear range of 0.5-500 mIU mL-1. The results show that electrospinning is effective in modifying conventional NC membranes for LFA applications.
Collapse
Affiliation(s)
- Xue Wang
- College of Environmental Science and Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Chao-Hua Xue
- College of Environmental Science and Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Dong Yang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Shun-Tian Jia
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Ya-Ru Ding
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Lei Lei
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Ke-Yi Gao
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Tong-Tong Jia
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| |
Collapse
|
4
|
Advances in stem cell research for the treatment of primary hypogonadism. Nat Rev Urol 2021; 18:487-507. [PMID: 34188209 DOI: 10.1038/s41585-021-00480-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
In Leydig cell dysfunction, cells respond weakly to stimulation by pituitary luteinizing hormone, and, therefore, produce less testosterone, leading to primary hypogonadism. The most widely used treatment for primary hypogonadism is testosterone replacement therapy (TRT). However, TRT causes infertility and has been associated with other adverse effects, such as causing erythrocytosis and gynaecomastia, worsening obstructive sleep apnoea and increasing cardiovascular morbidity and mortality risks. Stem-cell-based therapy that re-establishes testosterone-producing cell lineages in the body has, therefore, become a promising prospect for treating primary hypogonadism. Over the past two decades, substantial advances have been made in the identification of Leydig cell sources for use in transplantation surgery, including the artificial induction of Leydig-like cells from different types of stem cells, for example, stem Leydig cells, mesenchymal stem cells, and pluripotent stem cells (PSCs). PSC-derived Leydig-like cells have already provided a powerful in vitro model to study the molecular mechanisms underlying Leydig cell differentiation and could be used to treat men with primary hypogonadism in a more specific and personalized approach.
Collapse
|
5
|
Yang Y, Zhou C, Zhang T, Li Q, Mei J, Liang J, Li Z, Li H, Xiang Q, Zhang Q, Zhang L, Huang Y. Conversion of Fibroblast into Functional Leydig-like Cell Using Defined Small Molecules. Stem Cell Reports 2020; 15:408-423. [PMID: 32735821 PMCID: PMC7419716 DOI: 10.1016/j.stemcr.2020.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022] Open
Abstract
Recent studies have demonstrated that fibroblasts can be directly converted into functional Leydig cells by transcription factors. However, the transgenic approach used in these studies raises safety concerns for its future application. Here, we report that fibroblasts can be directly reprogrammed into Leydig-like cells by exposure to a combination of forskolin, 20α-hydroxycholesterol, luteinizing hormone, and SB431542. These chemical compound-induced Leydig-like cells (CiLCs) express steroidogenic genes and have a global gene expression profile similar to that of progenitor Leydig cells, although not identical. In addition, these cells can survive in testis and produce testosterone in a circadian rhythm. This induction strategy is applicable to reprogramming human periodontal ligament fibroblasts toward Leydig-like cells. These findings demonstrated fibroblasts can be directly converted into Leydig-like cells by pure chemical compounds. This strategy overcomes the limitations of conventional transgenic-based reprogramming and provides a simple, effective approach for Leydig cell-based therapy while simultaneously preserving the hypothalamic-pituitary-gonadal axis. Direct induction of fibroblasts into Leydig-like cells (CiLCs) by chemicals CiLCs were modulated by HPG axis and produced testosterone in a diurnal rhythm Conversion process toward CiLCs did not pass through an intermediate state
Collapse
Affiliation(s)
- Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Chenxing Zhou
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Tiantian Zhang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Quan Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Jiaxin Mei
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Jinlian Liang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Ziyi Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Hanhao Li
- Department of Pharmacology, Jinan University, Guangzhou 510632, China
| | - Qi Xiang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; Bioparmaceutical R&D Center of Jinan University, Guangzhou 510632, China
| | - Qihao Zhang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Lei Zhang
- Guangdong Provincial Institute of Biological Products and Materia Medica, Guangzhou 510440, China
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; Department of Pharmacology, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Bioengineering Medicine of, Guangzhou 510632, China.
| |
Collapse
|
6
|
Chen P, Zirkin BR, Chen H. Stem Leydig Cells in the Adult Testis: Characterization, Regulation and Potential Applications. Endocr Rev 2020; 41:5610863. [PMID: 31673697 PMCID: PMC7753054 DOI: 10.1210/endrev/bnz013] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/25/2019] [Indexed: 01/20/2023]
Abstract
Androgen deficiency (hypogonadism) affects males of all ages. Testosterone replacement therapy (TRT) is effective in restoring serum testosterone and relieving symptoms. TRT, however, is reported to have possible adverse effects in part because administered testosterone is not produced in response to the hypothalamic-pituitary-gonadal (HPG) axis. Progress in stem cell biology offers potential alternatives for treating hypogonadism. Adult Leydig cells (ALCs) are generated by stem Leydig cells (SLCs) during puberty. SLCs persist in the adult testis. Considerable progress has been made in the identification, isolation, expansion and differentiation of SLCs in vitro. In addition to forming ALCs, SLCs are multipotent, with the ability to give rise to all 3 major cell lineages of typical mesenchymal stem cells, including osteoblasts, adipocytes, and chondrocytes. Several regulatory factors, including Desert hedgehog and platelet-derived growth factor, have been reported to play key roles in the proliferation and differentiation of SLCs into the Leydig lineage. In addition, stem cells from several nonsteroidogenic sources, including embryonic stem cells, induced pluripotent stem cells, mature fibroblasts, and mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord have been transdifferentiated into Leydig-like cells under a variety of induction protocols. ALCs generated from SLCs in vitro, as well as Leydig-like cells, have been successfully transplanted into ALC-depleted animals, restoring serum testosterone levels under HPG control. However, important questions remain, including: How long will the transplanted cells continue to function? Which induction protocol is safest and most effective? For translational purposes, more work is needed with primate cells, especially human.
Collapse
Affiliation(s)
- Panpan Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Barry R Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Haolin Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
7
|
Zou X, Hou Y, Xu J, Zhong L, Zhou J, Zhang G, Sun J. Mitochondria transfer via tunneling nanotubes is an important mechanism by which CD133+ scattered tubular cells eliminate hypoxic tubular cell injury. Biochem Biophys Res Commun 2019; 522:205-212. [PMID: 31759629 DOI: 10.1016/j.bbrc.2019.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022]
Abstract
Renal CD133 + scattered tubular cells (STCs) have been regarded as progenitor-like cells in the kidney and participated in ischemic renal injury repair. However, the mechanism of this effect is not fully elucidated yet. The primary objective of this study was to investigate the hypothesis that the protective effect of CD133 + STCs depends on the transfer of mitochondria to injured tubular cells in vitro. In this study, renal ischemic reperfusion injury (IRI) rat model was established with one side kidney ischemic for 45 min and animals were sacrificed at 48 h after operation. Tubular cells were isolated and cultured in vitro, and then CD133 + STCs were selected from the cultured cells. Then, CD133 + STCs were co-cultured with CD133-tubular cells (TECs) to detect the tunneling nanotubes like structures, and the transfer of mitochondria from CD133 + STCs to injured tubular cells were detected by fluorescent imaging and flow cytometry. Further, cellular protective effects of CD133 + STCs were tested when cultured with TECs under hypoxic conditions. In results, renal CD133 + STCs were scattered throughout the normal kidney and increased upon ischemic injury. Nanotube formations were commonly found between CD133 + STCs and TECs, and the transfer of mitochondria was detected from CD133 + STCs to TECs. Further, CD133 + STCs exist significant anti-apoptosis and pro-proliferation effects for TECs under hypoxic culture conditions. Thus, this study was first described that renal CD133 + STCs could transfer mitochondria to injured TECs in vitro for its protective effects, which revealed an important novel mechanism for renal repair after ischemic injury.
Collapse
Affiliation(s)
- Xiangyu Zou
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanping Hou
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinxia Xu
- School of Rehabilitation Medicine,Weifang Medical University, Shandong Province, China
| | - Liang Zhong
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Zhou
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangyuan Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Jiangsu, China.
| | - Jie Sun
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|