1
|
Pinto N, Nissa MU, Yashwanth BS, Sathiyanarayanan A, Pai MGJ, Srivastava S, Goswami M. Proteomics analysis of differentially abundant proteins in the rohu kidney infected with Edwardsiella tarda. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101221. [PMID: 38430708 DOI: 10.1016/j.cbd.2024.101221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Edwardsiella tarda (Et) is a zoonotic gram-negative pathogen with a diverse host range, including fish. However, the in-depth molecular mechanisms underlying the response of Labeo rohita (rohu) kidney to Et are poorly understood. A proteomic and histopathological analysis was performed for the rohu kidney after Et infection. The histopathology of the infected rohu kidney showed vacuolation and necrosis. After LC-MS/MS analysis, ~1240 proteins were identified with ≥2 unique peptides. A total of 96 differentially abundant proteins (DAPs) were observed between the control and Et infected group (ET). Metascape and STRING analysis were used for the gene ontology (GO), and protein-protein interaction network (PPI) for the significant pathways of DAPs. In PPI, low-abundant proteins were mapped to metabolic pathways and oxidative phosphorylation (cox5ab, uqcrfs1). High-abundance proteins were mapped to ribosomes (rplp2), protein process in the ER (hspa8), and immune system (ptgdsb.1, muc2). Our label-free proteomic approach in the rohu kidney revealed abundant enriched proteins involved in vesicle coat (ehd4), complement activation (c3a.1, c9, c7a), phagosome (thbs4, mapk1), metabolic reprogramming (hao1, glud1a), wound healing (vim, alox5), and the immune system (psap) after Et infection. A targeted proteomics approach of multiple reaction monitoring (MRM) validated the DAPs (nprl3, ambp, vmo1a, hspg2, muc2, hao1 and glud1a) between control and ET. Overall, the current analysis of histology and proteome in the rohu kidney provides comprehensive data on pathogenicity and the potential immune proteins against Et.
Collapse
Affiliation(s)
- Nevil Pinto
- Indian Council of Agricultural Research - Central Institute of Fisheries Education, Versova, Mumbai, Maharashtra 400061, India. https://twitter.com/pintonevil8
| | - Mehar Un Nissa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - B S Yashwanth
- Indian Council of Agricultural Research - Central Institute of Fisheries Education, Versova, Mumbai, Maharashtra 400061, India
| | - A Sathiyanarayanan
- Indian Council of Agricultural Research - Central Institute of Fisheries Education, Versova, Mumbai, Maharashtra 400061, India
| | - Medha Gayathri J Pai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India. https://twitter.com/Sanjeeva_IITB
| | - Mukunda Goswami
- Indian Council of Agricultural Research - Central Institute of Fisheries Education, Versova, Mumbai, Maharashtra 400061, India.
| |
Collapse
|
2
|
Yang W, Liu X, He Z, Zhang Y, Tan X, Liu C. odd skipped-related 2 as a novel mark for labeling the proximal convoluted tubule within the zebrafish kidney. Heliyon 2024; 10:e27582. [PMID: 38496848 PMCID: PMC10944271 DOI: 10.1016/j.heliyon.2024.e27582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/15/2023] [Accepted: 03/03/2024] [Indexed: 03/19/2024] Open
Abstract
The proximal convoluted tubule (PCT) of the kidney is a crucial functional segment responsible for reabsorption, secretion, and the maintenance of electrolyte and water balance within the renal tubule. However, there is a lack of a well-defined endogenous transgenic line for studying PCT morphogenesis. By analyzing single-cell transcriptome data from the adult zebrafish kidney, we have identified the expression of odd-skipped-related 2 (osr2, which encodes an odd-skipped zinc-finger transcription factor) in the PCT. To gain insight into the role of osr2 in PCT morphogenesis, we have generated a transgenic zebrafish line Tg(osr2:EGFP), expressing enhanced green fluorescent protein (EGFP). The EGFP expression pattern closely mirrors that of endogenous Osr2, faithfully recapitulating its native expression profile. During kidney development, we can use EGFP to track PCT development, which is also preserved in adult zebrafish. Additionally, osr2:EGFP-labeled zebrafish PCT fragments displayed short lengths with infrequent overlap, rendering them conducive for nephrons counting. The generation of Tg(osr2:EGFP) transgenic line is accompanied by simultaneous disruption of osr2 activity. Importantly, our findings demonstrate that osr2 inactivation had no discernible impact on the development and regeneration of Tg(osr2:EGFP) zebrafish nephrons. Overall, the establishment of this transgenic zebrafish line offers a valuable tool for both genetic and chemical analysis of PCT.
Collapse
Affiliation(s)
- Wenmin Yang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, PR China
| | - Xiaoliang Liu
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, PR China
| | - Zhongwei He
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, PR China
| | - Yunfeng Zhang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, PR China
| | - Xiaoqin Tan
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, PR China
| | - Chi Liu
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, PR China
| |
Collapse
|
3
|
Liu C, Liu X, He Z, Zhang J, Tan X, Yang W, Zhang Y, Yu T, Liao S, Dai L, Xu Z, Li F, Huang Y, Zhao J. Proenkephalin-A secreted by renal proximal tubules functions as a brake in kidney regeneration. Nat Commun 2023; 14:7167. [PMID: 37935684 PMCID: PMC10630464 DOI: 10.1038/s41467-023-42929-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Organ regeneration necessitates precise coordination of accelerators and brakes to restore organ function. However, the mechanisms underlying this intricate molecular crosstalk remain elusive. In this study, the level of proenkephalin-A (PENK-A), expressed by renal proximal tubular epithelial cells, decreases significantly with the loss of renal proximal tubules and increased at the termination phase of zebrafish kidney regeneration. Notably, this change contrasts with the role of hydrogen peroxide (H2O2), which acts as an accelerator in kidney regeneration. Through experiments with penka mutants and pharmaceutical treatments, we demonstrate that PENK-A inhibits H2O2 production in a dose-dependent manner, suggesting its involvement in regulating the rate and termination of regeneration. Furthermore, H2O2 influences the expression of tcf21, a vital factor in the formation of renal progenitor cell aggregates, by remodeling H3K4me3 in renal cells. Overall, our findings highlight the regulatory role of PENK-A as a brake in kidney regeneration.
Collapse
Affiliation(s)
- Chi Liu
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, P.R. China.
| | - Xiaoliang Liu
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, P.R. China
| | - Zhongwei He
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, P.R. China
| | - Jiangping Zhang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, P.R. China
| | - Xiaoqin Tan
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, P.R. China
| | - Wenmin Yang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, P.R. China
| | - Yunfeng Zhang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, P.R. China
| | - Ting Yu
- Department of Respiratory Medicine, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, P.R. China
| | - Shuyi Liao
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, P.R. China
| | - Lu Dai
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, P.R. China
| | - Zhi Xu
- Department of Respiratory Medicine, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, P.R. China
| | - Furong Li
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, P.R. China
| | - Yinghui Huang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, P.R. China.
| | - Jinghong Zhao
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, P.R. China.
| |
Collapse
|
4
|
Nguyen TK, Petrikas M, Chambers BE, Wingert RA. Principles of Zebrafish Nephron Segment Development. J Dev Biol 2023; 11:jdb11010014. [PMID: 36976103 PMCID: PMC10052950 DOI: 10.3390/jdb11010014] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Nephrons are the functional units which comprise the kidney. Each nephron contains a number of physiologically unique populations of specialized epithelial cells that are organized into discrete domains known as segments. The principles of nephron segment development have been the subject of many studies in recent years. Understanding the mechanisms of nephrogenesis has enormous potential to expand our knowledge about the basis of congenital anomalies of the kidney and urinary tract (CAKUT), and to contribute to ongoing regenerative medicine efforts aimed at identifying renal repair mechanisms and generating replacement kidney tissue. The study of the zebrafish embryonic kidney, or pronephros, provides many opportunities to identify the genes and signaling pathways that control nephron segment development. Here, we describe recent advances of nephron segment patterning and differentiation in the zebrafish, with a focus on distal segment formation.
Collapse
Affiliation(s)
- Thanh Khoa Nguyen
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Madeline Petrikas
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brooke E Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
5
|
Drummond BE, Ercanbrack WS, Wingert RA. Modeling Podocyte Ontogeny and Podocytopathies with the Zebrafish. J Dev Biol 2023; 11:9. [PMID: 36810461 PMCID: PMC9944608 DOI: 10.3390/jdb11010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Podocytes are exquisitely fashioned kidney cells that serve an essential role in the process of blood filtration. Congenital malformation or damage to podocytes has dire consequences and initiates a cascade of pathological changes leading to renal disease states known as podocytopathies. In addition, animal models have been integral to discovering the molecular pathways that direct the development of podocytes. In this review, we explore how researchers have used the zebrafish to illuminate new insights about the processes of podocyte ontogeny, model podocytopathies, and create opportunities to discover future therapies.
Collapse
Affiliation(s)
| | | | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
6
|
Liu X, Yu T, Tan X, Jin D, Yang W, Zhang J, Dai L, He Z, Li D, Zhang Y, Liao S, Zhao J, Zhong TP, Liu C. Renal interstitial cells promote nephron regeneration by secreting prostaglandin E2. eLife 2023; 12:81438. [PMID: 36645741 PMCID: PMC9943066 DOI: 10.7554/elife.81438] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
In organ regeneration, progenitor and stem cells reside in their native microenvironment, which provides dynamic physical and chemical cues essential to their survival, proliferation, and differentiation. However, the types of cells that form the native microenvironment for renal progenitor cells (RPCs) have not been clarified. Here, single-cell sequencing of zebrafish kidney reveals fabp10a as a principal marker of renal interstitial cells (RICs), which can be specifically labeled by GFP under the control of fabp10a promoter in the fabp10a:GFP transgenic zebrafish. During nephron regeneration, the formation of nephrons is supported by RICs that form a network to wrap the RPC aggregates. RICs that are in close contact with RPC aggregates express cyclooxygenase 2 (Cox2) and secrete prostaglandin E2 (PGE2). Inhibiting PGE2 production prevents nephrogenesis by reducing the proliferation of RPCs. PGE2 cooperates with Wnt4a to promote nephron maturation by regulating β-catenin stability of RPC aggregates. Overall, these findings indicate that RICs provide a necessary microenvironment for rapid nephrogenesis during nephron regeneration.
Collapse
Affiliation(s)
- Xiaoliang Liu
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Ting Yu
- Department of Respiratory Medicine, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Xiaoqin Tan
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Daqing Jin
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, School of Life SciencesShanghaiChina
| | - Wenmin Yang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Jiangping Zhang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Lu Dai
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Zhongwei He
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Dongliang Li
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, School of Life SciencesShanghaiChina
| | - Yunfeng Zhang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Shuyi Liao
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Jinghong Zhao
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, School of Life SciencesShanghaiChina
| | - Chi Liu
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| |
Collapse
|
7
|
Carbonell M B, Zapata Cardona J, Delgado JP. Hydrogen peroxide is necessary during tail regeneration in juvenile axolotl. Dev Dyn 2021; 251:1054-1076. [PMID: 34129260 DOI: 10.1002/dvdy.386] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Hydrogen peroxide (H2 O2 ) is a key reactive oxygen species (ROS) generated during appendage regeneration among vertebrates. However, its role during tail regeneration in axolotl as redox signaling molecule is unclear. RESULTS Treatment with exogenous H2 O2 rescues inhibitory effects of apocynin-induced growth suppression in tail blastema cells leading to cell proliferation. H2 O2 also promotes recruitment of immune cells, regulate the activation of AKT kinase and Agr2 expression during blastema formation. Additionally, ROS/H2 O2 regulates the expression and transcriptional activity of Yap1 and its target genes Ctgf and Areg. CONCLUSIONS These results show that H2 O2 is necessary and sufficient to promote tail regeneration in axolotls. Additionally, Akt signaling and Agr2 were identified as ROS targets, suggesting that ROS/H2 O2 is likely to regulate epimorphic regeneration through these signaling pathways. In addition, ROS/H2 O2 -dependent-Yap1 activity is required during tail regeneration.
Collapse
Affiliation(s)
- Belfran Carbonell M
- Grupo de Genética, Regeneración y Cáncer, Universidad de Antioquia, Sede de Investigación Universitaria, Medellín, Colombia
| | - Juliana Zapata Cardona
- Grupo de Investigación en Patobiología Quirón, Escuela de Medicina Veterinaria, Universidad de Antioquia, Medellín, Colombia
| | - Jean Paul Delgado
- Grupo de Genética, Regeneración y Cáncer, Universidad de Antioquia, Sede de Investigación Universitaria, Medellín, Colombia
| |
Collapse
|
8
|
Pham D, Basu U, Pohorilets I, St Croix CM, Watkins SC, Koide K. Fluorogenic Probe Using a Mislow–Evans Rearrangement for Real‐Time Imaging of Hydrogen Peroxide. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dianne Pham
- Department of Chemistry University of Pittsburgh 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Upamanyu Basu
- Department of Chemistry University of Pittsburgh 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Ivanna Pohorilets
- Department of Chemistry University of Pittsburgh 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Claudette M. St Croix
- Center for Biologic Imaging Department of Cell Biology University of Pittsburgh 3500 Terrace Street Pittsburgh PA 15261 USA
| | - Simon C. Watkins
- Center for Biologic Imaging Department of Cell Biology University of Pittsburgh 3500 Terrace Street Pittsburgh PA 15261 USA
| | - Kazunori Koide
- Department of Chemistry University of Pittsburgh 219 Parkman Avenue Pittsburgh PA 15260 USA
| |
Collapse
|
9
|
Pham D, Basu U, Pohorilets I, St Croix CM, Watkins SC, Koide K. Fluorogenic Probe Using a Mislow–Evans Rearrangement for Real‐Time Imaging of Hydrogen Peroxide. Angew Chem Int Ed Engl 2020; 59:17435-17441. [DOI: 10.1002/anie.202007104] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/19/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Dianne Pham
- Department of Chemistry University of Pittsburgh 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Upamanyu Basu
- Department of Chemistry University of Pittsburgh 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Ivanna Pohorilets
- Department of Chemistry University of Pittsburgh 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Claudette M. St Croix
- Center for Biologic Imaging Department of Cell Biology University of Pittsburgh 3500 Terrace Street Pittsburgh PA 15261 USA
| | - Simon C. Watkins
- Center for Biologic Imaging Department of Cell Biology University of Pittsburgh 3500 Terrace Street Pittsburgh PA 15261 USA
| | - Kazunori Koide
- Department of Chemistry University of Pittsburgh 219 Parkman Avenue Pittsburgh PA 15260 USA
| |
Collapse
|