1
|
Jyotisha, Qureshi R, Qureshi IA. Exploration of membrane-bound ecto-phosphatase to identify potential therapeutic target for leishmaniasis. Int J Biol Macromol 2025; 307:141820. [PMID: 40057095 DOI: 10.1016/j.ijbiomac.2025.141820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
Leishmaniasis, caused by leishmanial parasites, is a major health concern worldwide that emphasizes on the exploration of novel therapeutic targets. Membrane-bound ecto-phosphatase of Leishmania donovani (LdMAcP) is essential for parasite virulence and absence of its ortholog in human makes it an attractive drug target. Hence, LdMAcP was cloned and purified to homogeneity that exhibited optimal catalytic efficiency at acidic pH. Analysis of secondary structure established the presence of appropriate secondary structural content with more α-helices, whereas quenching studies delineated the tryptophan residues to be predominantly situated within the hydrophobic regions. Additionally, LdMAcP elicited immune responses by upregulating pro-inflammatory cytokines and nitric oxide production. Structural studies revealed that LdMAcP shares a common α/β fold with other HAP superfamily members, while docking studies displayed binding of its inhibitor sanguinarine to the catalytic pocket with superior affinity than pNPP. Molecular dynamics simulations confirmed that LdMAcP complexes with pNPP and sanguinarine demonstrate enhanced stability compared to the apo form of the enzyme. Further analysis showed LdMAcP-sanguinarine complex to possess more negative binding energy as compared to its complex with pNPP. Altogether, the study underscores comprehensive insight of structural and immunomodulatory features of LdMAcP, offering its potential therapeutic application against leishmaniasis.
Collapse
Affiliation(s)
- Jyotisha
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India
| | - Rahila Qureshi
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India.
| |
Collapse
|
2
|
Nasim F, Jakkula P, Kumar MS, Alvala M, Qureshi IA. Structural and catalytic properties of histidyl-tRNA synthetase: A potential drug target against leishmaniasis. Int J Biol Macromol 2024; 282:137357. [PMID: 39515693 DOI: 10.1016/j.ijbiomac.2024.137357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Visceral leishmaniasis is caused by Leishmania donovani which affects the poorer sections of society, and despite the global spread, effective treatment is unavailable. The current study investigates the potential of leishmanial histidyl-tRNA synthetase (LdHisRS) as a drug target. LdHisRS delineated more closeness to other protozoan parasites than its mammalian counterparts and contained relevant differences in the active site residues. The important ATP-binding residues were mutated to alanine and all the proteins, including human HisRS, were purified to homogeneity. LdHisRS exhibited a dimeric state in solution and showed maximal amino acid activation activity in physiological conditions. It also demonstrated a greater affinity for substrate over cofactor, while magnesium and potassium enhanced its activity better than other tested metal ions. Comp-7m, a benzothiazolo-coumarin derivative, proved to be specific inhibitor of LdHisRS with competitive mode of inhibition for ATP whereas it displayed lower binding affinity towards mutants. LdHisRS majorly contained α-helices and most of the aromatic residues were present in its hydrophobic core. Additionally, Comp-7m superimposed on ATP adenine ring during docking analysis and LdHisRS-ligand complexes had comparable stability as well as rigidity in molecular dynamics simulation. We thus provide structural and functional insights of LdHisRS which can be useful for devising antileishmanials.
Collapse
Affiliation(s)
- Fouzia Nasim
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India
| | - Pranay Jakkula
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India
| | - Muppidi Shravan Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Mallika Alvala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India.
| |
Collapse
|
3
|
Kumar J, Jyotisha, Qureshi R, Jagruthi P, Arifuddin M, Qureshi IA. Discovery of 8-hydroxy-2-quinoline carbaldehyde derivatives as inhibitors for M1 aminopeptidase of Leishmania donovani. Int J Biol Macromol 2024; 279:135105. [PMID: 39197615 DOI: 10.1016/j.ijbiomac.2024.135105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/08/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
M1 aminopeptidase is a metallopeptidase that plays a vital role in protein catabolism and has been identified as a validated drug target in various parasites; however, our understanding of this enzyme is restricted for leishmanial parasite. The present investigation involved the purification of Leishmania donovani M1 aminopeptidase (LdM1AP) to homogeneity by affinity chromatography. Purified LdM1AP was observed to be enzymatically active and displayed maximal activity in the presence of cobalt ions, whereas secondary structure analysis confirmed the dominance of α-helices. Intrinsic fluorescence and quenching studies of LdM1AP has revealed that tryptophan residues were predominantly concealed within the hydrophobic areas. The synthesized 8-hydroxy-2-quinoline carbaldehyde derivatives were screened, wherein HQ2 and HQ12 were found as potent inhibitors for LdM1AP that compete with the substrate and exhibit pharmacokinetic properties as well as no toxicity for macrophages. Moreover, structural insights of protein and ligand complexes demonstrated that lead compounds mostly interact via hydrophobic contacts into the substrate binding pocket of LdM1AP. Furthermore, lead compounds exhibited a greater affinity for LdM1AP compared to the substrate during in vitro and in silico studies. This report establishes the possibility of quinoline derivatives to target the LdM1AP activity and provide a platform to design the specific antileishmanial drugs.
Collapse
Affiliation(s)
- Janish Kumar
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India
| | - Jyotisha
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India
| | - Rahila Qureshi
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Peddapaka Jagruthi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India.
| |
Collapse
|
4
|
Ranjan P, Sarma M, Dubey VK. Biochemical and biophysical characterization of Leishmania donovani citrate synthase. Int J Biol Macromol 2024; 279:135400. [PMID: 39245106 DOI: 10.1016/j.ijbiomac.2024.135400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/25/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Citrate synthase is a crucial enzyme in the TCA cycle and represents a potential therapeutic target. However, knowledge about this enzyme in Leishmania parasites remains limited. In this study, we have successfully cloned, expressed, and purified citrate synthase from Leishmania donovani (LdCS) using a bacterial system, and characterized it through various biophysical and biochemical methods. Circular dichroism analysis at physiological pH indicates that LdCS is properly folded. Further investigation into its tertiary structure using a quencher reveals that most tryptophan residues are located within the protein's hydrophobic core. Biochemical assays show that the recombinant enzyme is catalytically active, with optimal activity at pH 7.0. Kinetic studies provided parameters such as Km and Vmax. Enzyme inhibition assays revealed that LdCS activity is competitively inhibited by FDA-approved compounds-Abemaciclib, Bazedoxifene, Vorapaxar, and Imatinib-with Ki values ranging from 2 to 3 μM, demonstrating significant binding affinity. This research paves the way for exploring LdCS as a potential drug target for treating leishmaniasis.
Collapse
Affiliation(s)
- Preeti Ranjan
- School of Biochemical Engineering, Indian Institute of Technology BHU, Varanasi, UP 221005, India
| | - Manash Sarma
- School of Biochemical Engineering, Indian Institute of Technology BHU, Varanasi, UP 221005, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology BHU, Varanasi, UP 221005, India.
| |
Collapse
|
5
|
Nasim F, Kumar MS, Alvala M, Qureshi IA. Unraveling the peculiarities and development of novel inhibitors of leishmanial arginyl-tRNA synthetase. FEBS J 2024; 291:2955-2979. [PMID: 38525644 DOI: 10.1111/febs.17122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Aminoacylation by tRNA synthetase is a crucial part of protein synthesis and is widely recognized as a therapeutic target for drug development. Unlike the arginyl-tRNA synthetases (ArgRSs) reported previously, here, we report an ArgRS of Leishmania donovani (LdArgRS) that can follow the canonical two-step aminoacylation process. Since a previously uncharacterized insertion region is present within its catalytic domain, we implemented the splicing by overlap extension PCR (SOE-PCR) method to create a deletion mutant (ΔIns-LdArgRS) devoid of this region to investigate its function. Notably, the purified LdArgRS and ΔIns-LdArgRS exhibited different oligomeric states along with variations in their enzymatic activity. The full-length protein showed better catalytic efficiency than ΔIns-LdArgRS, and the insertion region was identified as the tRNA binding domain. In addition, a benzothiazolo-coumarin derivative (Comp-7j) possessing high pharmacokinetic properties was recognized as a competitive and more specific inhibitor of LdArgRS than its human counterpart. Removal of the insertion region altered the mode of inhibition for ΔIns-LdArgRS and caused a reduction in the inhibitor's binding affinity. Both purified proteins depicted variances in the secondary structural content upon ligand binding and thus, thermostability. Apart from the trypanosomatid-specific insertion and Rossmann fold motif, LdArgRS revealed typical structural characteristics of ArgRSs, and Comp-7j was found to bind within the ATP binding pocket. Furthermore, the placement of tRNAArg near the insertion region enhanced the stability and compactness of LdArgRS compared to other ligands. This study thus reports a unique ArgRS with respect to catalytic as well as structural properties, which can be considered a plausible drug target for the derivation of novel anti-leishmanial agents.
Collapse
Affiliation(s)
- Fouzia Nasim
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Muppidi Shravan Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Mallika Alvala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
6
|
Narsimulu B, Jakkula P, Qureshi R, Nasim F, Qureshi IA. Inhibition and structural insights of leishmanial glutamyl-tRNA synthetase for designing potent therapeutics. Int J Biol Macromol 2024; 254:127756. [PMID: 37907177 DOI: 10.1016/j.ijbiomac.2023.127756] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/08/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
Aminoacyl-tRNA synthetases (aaRSs), essential components of the protein synthesizing machinery, have been often chosen for devising therapeutics against parasitic diseases. Due to their relevance in drug development, the current study was designed to explore functional and structural aspects of Leishmania donovani glutamyl-tRNA synthetase (LdGluRS). Hence, LdGluRS was cloned into an expression vector and purified to homogeneity using chromatographic techniques. Purified protein showed maximum enzymatic activity at physiological pH, with more binding capacity towards its cofactor (Adenosine triphosphate, 0.06 ± 0.01 mM) than the cognate substrate (L-glutamate, 9.5 ± 0.5 mM). Remarkably, salicylate inhibited LdGluRS competitively with respect to L-glutamate and exhibited druglikeness with negligible effect on human macrophages. The protein possessed more α-helices (43 %) than β-sheets (12 %), whereas reductions in thermal stability and cofactor-binding affinity, along with variation in mode of inhibition after mutation signified the role of histidine (H60) as a catalytic residue. LdGluRS could also generate a pro-inflammatory milieu in human macrophages by upregulating cytokines. The docking study demonstrated the placement of salicylate into LdGluRS substrate-binding site, and the complex was found to be stable during molecular dynamics (MD) simulation. Altogether, our study highlights the understanding of molecular inhibition and structural features of glutamyl-tRNA synthetase from kinetoplastid parasites.
Collapse
Affiliation(s)
- Bandigi Narsimulu
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India
| | - Pranay Jakkula
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India
| | - Rahila Qureshi
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Fouzia Nasim
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India.
| |
Collapse
|
7
|
Jyotisha, Qureshi R, Qureshi IA. Development of a multi-epitope vaccine candidate for leishmanial parasites applying immunoinformatics and in vitro approaches. Front Immunol 2023; 14:1269774. [PMID: 38035118 PMCID: PMC10684680 DOI: 10.3389/fimmu.2023.1269774] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease, and its severity necessitates the development of a potent and efficient vaccine for the disease; however, no human vaccine has yet been approved for clinical use. This study aims to design and evaluate a multi-epitope vaccine against the leishmanial parasite by utilizing helper T-lymphocyte (HTL), cytotoxic T-lymphocyte (CTL), and linear B-lymphocyte (LBL) epitopes from membrane-bound acid phosphatase of Leishmania donovani (LdMAcP). The designed multi-epitope vaccine (LdMAPV) was highly antigenic, non-allergenic, and non-toxic, with suitable physicochemical properties. The three-dimensional structure of LdMAPV was modeled and validated, succeeded by molecular docking and molecular dynamics simulation (MDS) studies that confirmed the high binding affinity and stable interactions between human toll-like receptors and LdMAPV. In silico disulfide engineering provided improved stability to LdMAPV, whereas immune simulation displayed the induction of both immune responses, i.e., antibody and cell-mediated immune responses, with a rise in cytokines. Furthermore, LdMAPV sequence was codon optimized and cloned into the pET-28a vector, followed by its expression in a bacterial host. The recombinant protein was purified using affinity chromatography and subjected to determine its effect on cytotoxicity, cytokines, and nitric oxide generation by mammalian macrophages. Altogether, this report provides a multi-epitope vaccine candidate from a leishmanial protein participating in parasitic virulence that has shown its potency to be a promising vaccine candidate against leishmanial parasites.
Collapse
Affiliation(s)
- Jyotisha
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Rahila Qureshi
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
8
|
Narsimulu B, Qureshi R, Jakkula P, Singh P, Arifuddin M, Qureshi IA. Exploration of seryl tRNA synthetase to identify potent inhibitors against leishmanial parasites. Int J Biol Macromol 2023; 237:124118. [PMID: 36963547 DOI: 10.1016/j.ijbiomac.2023.124118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023]
Abstract
Aminoacyl-tRNA synthetases are crucial enzymes for cellular protein metabolism and have been considered as an attractive target for development of new antimicrobials. In the current study, seryl tRNA synthetase of Leishmania donovani (LdSerRS) and its mutants were purified and characterized through biochemical and structural methods. Purified LdSerRS was found to be enzymatically active and exhibited more alpha helices in secondary structure. The enzymatic activity of purified protein was observed as highest near physiological temperature and pH. Mutation in ATP binding residues (R295 and E297) demonstrated reduction in the affinity for cofactor with no significant deviation in secondary structure. In vitro inhibition studies with ureidosulfocoumarin derivatives helped to identify Comp 5l as a specific inhibitor for leishmanial SerRS that showed lesser potency towards purified HsSerRS. The identified compound presented competitive mode of inhibition for LdSerRS and also revealed druglikeness along with very low toxicity for human macrophages. Structural analysis of protein and ligand complex depicted the binding of Comp 5l into the cofactor binding site of LdSerRS with high affinity succeeded by validation employing molecular dynamics simulations. Altogether, our study presents a promising scaffold to explore small molecules to target the enzymatic activity of leishmanial SerRS to develop the specific therapeutics.
Collapse
Affiliation(s)
- Bandigi Narsimulu
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India
| | - Rahila Qureshi
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Pranay Jakkula
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India
| | - Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India.
| |
Collapse
|
9
|
Esteves BB, Melo-Braga MN, Gorshkov V, Verano-Braga T, Larsen MR, Gontijo CMF, Quaresma PF, Andrade HM. Characterization of Differentially Abundant Proteins Among Leishmania (Viannia) braziliensis Strains Isolated From Atypical or Typical Lesions. Front Cell Infect Microbiol 2022; 12:824968. [PMID: 35242720 PMCID: PMC8886221 DOI: 10.3389/fcimb.2022.824968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022] Open
Abstract
Leishmania (Viannia) braziliensis is the main etiological agent of cutaneous and mucocutaneous leishmaniasis in Latin America. Non-ulcerated atypical tegumentary leishmaniasis cases caused by L. braziliensis have been reported in several regions of the American continent, including the Xacriabá indigenous reserve in São João das Missões/Minas Gerais, Brazil. Parasites isolated from these atypical clinical lesions are resistant to antimony-based therapeutics. In the present study, proteins displaying differential abundance in two strains of L. braziliensis isolated from patients with atypical lesions compared with four strains isolated from patients with typical lesions were identified using a quantitative proteomics approach based on tandem mass tag labeling (TMT) and mass spectrometry. A total of 532 (P<0.05) differentially abundant proteins were identified (298 upregulated and 234 downregulated) in strains from atypical lesions compared to strains from typical lesions. Prominent positively regulated proteins in atypical strains included those that may confer greater survival inside macrophages, proteins related to antimony resistance, and proteins associated with higher peroxidase activity. Additionally, we identified proteins showing potential as new drug and vaccine targets. Our findings contribute to the characterization of these intriguing L. braziliensis strains and provide a novel perspective on Atypical Cutaneous Leishmaniasis (ACL) cases that have been associated with therapeutic failures.
Collapse
Affiliation(s)
- Bárbara B. Esteves
- Laboratório de Leishmanioses, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcella N. Melo-Braga
- Laboratório de Biologia Sintética e Biomiméticos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vladimir Gorshkov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Thiago Verano-Braga
- Núcleo de Proteômica Funcional, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Martin R. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Célia M. F. Gontijo
- Study Group in Leishmaniosis, Instituto René Rachou (IRR) –Fundação Oswaldo Cruz (FIOCRUZ/MG) Belo Horizonte, Belo Horizonte, Brazil
| | - Patricia F. Quaresma
- Departamento de Microbiologia Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Helida M. Andrade
- Laboratório de Leishmanioses, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Helida M. Andrade,
| |
Collapse
|
10
|
Narsimulu B, Qureshi R, Jakkula P, Are S, Qureshi IA. Biophysical and Structural Characterization of Ribulose-5-phosphate Epimerase from Leishmania donovani. ACS OMEGA 2022; 7:548-564. [PMID: 35036723 PMCID: PMC8756792 DOI: 10.1021/acsomega.1c04967] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Pentose phosphate pathway (PPP) plays a crucial role in the maintenance of NADPH/NADP+ homeostasis and provides protection against oxidative stress through detoxification of the reactive oxygen species. Ribulose-5-phosphate epimerase (RPE) participates in catalysis of the interconversion of ribulose-5-phosphate (Ru5P) to xylulose-5-phosphate (Xu5P) during PPP, however the structural attributes of this enzyme are still underexplored in many human pathogens including leishmanial parasites. The present study focuses upon cloning, purification and characterization of RPE of Leishmania donovani (LdRPE) using various biophysical and structural approaches. Sequence analysis has shown the presence of trypanosomatid-specific insertions at the N-terminus that are absent in humans and other eukaryotes. Gel filtration chromatography indicated recombinant LdRPE to exist as a dimer in the solution. Circular dichroism studies revealed a higher alpha helical content at physiological pH and temperature that comparatively varies with changing these parameters. Additionally, intrinsic fluorescence and quenching studies of LdRPE have depicted that tryptophan residues are mainly buried in the hydrophobic regions, and the recombinant enzyme is moderately tolerant to urea. Moreover, homology modeling was employed to generate the three-dimensional structure of LdRPE followed by molecular docking with the substrate, product, and substrate analogues. The modeled structure of LdRPE unravelled the presence of conserved active site residues as well as a single binding pocket for the substrate and product, while an in silico study suggested binding of substrate analogues into a similar pocket with more affinity than the substrate. Additionally, molecular dynamics simulation analysis has deciphered complexes of LdRPE with most of the ligands exhibiting more stability than its apo form and lesser fluctuations in active site residues in the presence of ligands. Altogether, our study presents structural insights into leishmanial RPE that could provide the basis for its implication to develop potent antileishmanials.
Collapse
Affiliation(s)
- Bandigi Narsimulu
- Department
of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Hyderabad 500046, India
| | | | - Pranay Jakkula
- Department
of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Hyderabad 500046, India
| | - Sayanna Are
- Department
of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Hyderabad 500046, India
| | - Insaf Ahmed Qureshi
- Department
of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Hyderabad 500046, India
| |
Collapse
|
11
|
Parasite protein phosphatases: biological function, virulence, and host immune evasion. Parasitol Res 2021; 120:2703-2715. [PMID: 34309709 DOI: 10.1007/s00436-021-07259-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
Protein phosphatases are enzymes that dephosphorylate tyrosine and serine/threonine amino acid residues. Although their role in cellular processes has been best characterized in higher eukaryotes, they have also been identified and studied in different pathogenic microorganisms (e.g., parasites) in the last two decades. Whereas some parasite protein phosphatases carry out functions similar to those of their homologs in yeast and mammalian cells, others have unique structural and/or functional characteristics. Thus, the latter unique phosphatases may be instrumental as targets for drug therapy or as markers for diagnosis. It is important to better understand the involvement of protein phosphatases in parasites in relation to their cell cycle, metabolism, virulence, and evasion of the host immune response. The up-to-date information about parasite phosphatases of medical and veterinarian relevance is herein reviewed.
Collapse
|
12
|
Jakkula P, Narsimulu B, Qureshi IA. Biochemical and structural insights into 6-phosphogluconate dehydrogenase from Leishmania donovani. Appl Microbiol Biotechnol 2021; 105:5471-5489. [PMID: 34250571 DOI: 10.1007/s00253-021-11434-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/19/2021] [Accepted: 06/13/2021] [Indexed: 11/29/2022]
Abstract
6-phosphogluconate dehydrogenase (6PGDH) participates in pentose phosphate pathway of glucose metabolism by catalyzing oxidative decarboxylation of 6-phsophogluconate (6PG) and its absence has been lethal for several eukaryotes. Despite being a validated drug target in many organisms like Plasmodium, the enzyme has not been explored in leishmanial parasites. In the present study, 6PGDH of Leishmania donovani (Ld6PGDH) is cloned and purified followed by its characterization using biochemical and structural approaches. Ld6PGDH lacks the glycine-serine-rich sequence at its C-terminal that is present in other eukaryotes including humans. Leishmanial 6PGDH possesses more affinity for substrate (6PG) and cofactor (NADP) in comparison to that of human. The enzymatic activity is inhibited by gentamicin and cefuroxime through competitive mode with functioning more potently towards leishmanial 6PGDH than its human counterpart. CD analysis has shown higher α-helical content in the secondary structure of Ld6PGDH, while fluorescence studies revealed that tryptophan residues are not completely accessible to solvent environment. The three-dimensional structure was generated through homology modelling and docked with substrate and cofactor. The docking studies demonstrated two separate binding pockets for 6PG and NADP with higher affinity for the cofactor binding, and Asn105 is interacting with substrate as well as the cofactor. Additionally, MD simulation has shown complexes of Ld6PGDH with 6PG and NADP to be more stable than its apo form. Altogether, the present study might provide the foundation to investigate this enzyme as potential target against leishmaniasis. KEY POINTS: • Ld6PGDH enzymatic activity is competitively inhibited by gentamicin and cefuroxime. • It displays more helical contents and all structural characteristics of 6PGDH family. • Interaction studies demonstrate higher affinity of cofactor than substrate for Ld6PGDH.
Collapse
Affiliation(s)
- Pranay Jakkula
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad, 500046, India
| | - Bandigi Narsimulu
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad, 500046, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad, 500046, India.
| |
Collapse
|
13
|
Freitas-Mesquita AL, Dos-Santos ALA, Meyer-Fernandes JR. Involvement of Leishmania Phosphatases in Parasite Biology and Pathogeny. Front Cell Infect Microbiol 2021; 11:633146. [PMID: 33968798 PMCID: PMC8100340 DOI: 10.3389/fcimb.2021.633146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/06/2021] [Indexed: 01/01/2023] Open
Abstract
In the Leishmania lifecycle, the motile promastigote form is transmitted from the sand fly vector to a mammalian host during a blood meal. Inside vertebrate host macrophages, the parasites can differentiate into the amastigote form and multiply, causing leishmaniasis, one of the most significant neglected tropical diseases. Leishmania parasites face different conditions throughout their development inside sand flies. Once in the mammalian host, the parasites have to overcome the microbicide repertoire of the cells of the immune system to successfully establish the infection. In this context, the expression of protein phosphatases is of particular interest. Several members of the serine/threonine-specific protein phosphatase (STP), protein tyrosine phosphatase (PTP), and histidine acid phosphatase (HAcP) families have been described in different Leishmania species. Although their physiological roles have not been fully elucidated, many studies suggest they have an involvement with parasite biology and pathogeny. Phosphatases play a role in adaptation to nutrient starvation during parasite passage through the sand fly midgut. They are also important to parasite virulence, mainly due to the modulation of host cytokine production and impairment of the microbiocidal potential of macrophages. Furthermore, recent whole-genome expression analyses have shown that different phosphatases are upregulated in metacyclic promastigotes, the infective form of the mammalian host. Leishmania phosphatases are also upregulated in drug-resistant strains, probably due to the increase in drug efflux related to the activation of ABC transporters. Throughout this review, we will describe the physiological roles that have been attributed to Leishmania endogenous phosphatases, including their involvement in the adaptation, survival, and proliferation of the parasites inside their hosts.
Collapse
Affiliation(s)
- Anita Leocadio Freitas-Mesquita
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luiz Araújo Dos-Santos
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Comparative phosphoproteomic analysis unravels MAPK1 regulated phosphoproteins in Leishmania donovani. J Proteomics 2021; 240:104189. [PMID: 33757882 DOI: 10.1016/j.jprot.2021.104189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/05/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Mitogen Activated Protein Kinase1 (MAPK1) of Leishmania donovani functions as key regulators of various cellular activities, which seem to be imperative for parasite survival, infectivity, drug resistance and post-translational modification of chaperones/co-chaperones. However, very less is known about LdMAPK1 target proteins. With recent advancements in proteomics, we aimed to identify phosphoproteins which were differentially expressed in LdMAPK1 overexpressing (Dd8++/++) and single replacement mutants (Dd8+/) as compared to wild type (Dd8+/+) parasites, utilizing LC-MS/MS approach. An in-depth label-free phospoproteomic analysis revealed that modulation of LdMAPK1 expression significantly modulates expression levels of miscellaneous phosphoproteins which may act as its targets/substrates. Out of 1974 quantified phosphoproteins in parasite, 140 were significantly differentially expressed in MAPK1 overexpressing and single replacement mutants. These differentially expressed phosphoproteins are majorly associated with metabolism, signal transduction, replication, transcription, translation, transporters and cytoskeleton/motor proteins, hence suggested that MAPK1 may act in concert to modulate global biological processes. The study further implicated possible role of LdMAPK1 in regulation and management of stress machinery in parasite through post translational modifications. Precisely, comparative phosphoproteomics study has elucidated significant role of LdMAPK1 in regulating various pathways contributing in parasite biology with relevance to future drug development. SIGNIFICANCE: MAPKinase1, the downstream kinase of MAPK signal transduction pathway, has drawn much attention as potential therapeutic drug target due to their indispensable role in survival and infectivity of Leishmania donovani. However, limited information is available about its downstream effector proteins/signaling networks. Utilizing label free LC-MS/MS analysis, phosphoproteome of LdMAPK1 over-expressing (Dd8++/++) and LdMAPK1 single replacement mutants (Dd8+/-) with wild type (Dd8+/+) parasites was compared and identified 140 LdMAPK1 modulated phosphoproteins, mainly involved in pathways like signal transduction, metabolism, transcriptional, translational, post-translational modification and regulation of heat shock proteins. Interestingly, LdMAPK1 interacts directly with only six phosphoproteins i.e. casein kinase, casein kinase II, HSP83/HSP90, LACK, protein kinase and serine/threonine protein kinase. Thus, the study elucidates significant role of LdMAPK1 in Leishmania biology which may drive drug-discovery efforts against visceral leishmaniasis.
Collapse
|
15
|
Genome Analysis of Endotrypanum and Porcisia spp., Closest Phylogenetic Relatives of Leishmania, Highlights the Role of Amastins in Shaping Pathogenicity. Genes (Basel) 2021; 12:genes12030444. [PMID: 33804709 PMCID: PMC8004069 DOI: 10.3390/genes12030444] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
While numerous genomes of Leishmania spp. have been sequenced and analyzed, an understanding of the evolutionary history of these organisms remains limited due to the unavailability of the sequence data for their closest known relatives, Endotrypanum and Porcisia spp., infecting sloths and porcupines. We have sequenced and analyzed genomes of three members of this clade in order to fill this gap. Their comparative analyses revealed only minute differences from Leishmaniamajor genome in terms of metabolic capacities. We also documented that the number of genes under positive selection on the Endotrypanum/Porcisia branch is rather small, with the flagellum-related group of genes being over-represented. Most significantly, the analysis of gene family evolution revealed a substantially reduced repertoire of surface proteins, such as amastins and biopterin transporters BT1 in the Endotrypanum/Porcisia species when compared to amastigote-dwelling Leishmania. This reduction was especially pronounced for δ-amastins, a subfamily of cell surface proteins crucial in the propagation of Leishmania amastigotes inside vertebrate macrophages and, apparently, dispensable for Endotrypanum/Porcisia, which do not infect such cells.
Collapse
|
16
|
Panigrahi GC, Qureshi R, Jakkula P, Kumar KA, Khan N, Qureshi IA. Leishmanial aspartyl-tRNA synthetase: Biochemical, biophysical and structural insights. Int J Biol Macromol 2020; 165:2869-2885. [PMID: 33736288 DOI: 10.1016/j.ijbiomac.2020.10.140] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/04/2020] [Accepted: 10/16/2020] [Indexed: 11/18/2022]
Abstract
Aminoacyl tRNA synthetases (aaRSs) are integral components of protein biosynthesis along with several non-canonical cellular processes. Inhibition studies of aaRSs presented these enzymes as promising drug targets in many pathogens, however aspartyl tRNA synthetase has not been studied in trypanosomatids despite its essentiality. Hence, full-length ORF of Leishmania donovani aspartyl tRNA synthetase (LdaspRS) was cloned and purified to homogeneity followed by molecular mass determination. The aminoacylation assay established that the purified protein performs its function optimally at physiological pH and temperature. The kinetic parameters of LdaspRS revealed the affinity of l-aspartate towards the enzyme to be very much lower than the cofactor. Our study also highlights the moonlighting function of LdaspRS to stimulate the pro-inflammatory cytokines and nitric oxide generation by host macrophage. Furthermore, CD and intrinsic tryptophan fluorescence measurements showed the changes in structural conformation at varying pH, denaturants and ligands. The modelled LdaspRS structure presented all the specific characteristics of class II aaRSs, while in silico study suggested binding of pyrimidine-derived inhibitors in its cofactor binding site with high affinity followed by validation using MD simulation. Altogether, this study could provide a platform for exploring LdaspRS to develop potential therapeutics against leishmaniasis.
Collapse
Affiliation(s)
- Girish Ch Panigrahi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Rahila Qureshi
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Pranay Jakkula
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - K Amith Kumar
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Nooruddin Khan
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|