1
|
Shin K, Kim Y, Kim S, Jung Kim H, Jeong S, Jang M, Park JH, Nam G. Anti-Glycation and Anti-Aging Efficacy of Newly Synthesized Antioxidant With Autophagy Stimulating Activity. J Cosmet Dermatol 2025; 24:e70240. [PMID: 40387285 DOI: 10.1111/jocd.70240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 05/03/2025] [Accepted: 05/06/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND The accumulation of advanced glycation end products (AGEs) in aged skin and their pro-aging effects suggest the potential application of anti-glycation ingredients as skin anti-aging agents. AIMS This study evaluated the anti-aging efficacy of a newly developed anti-glycation ingredient with antioxidant and autophagy-stimulating activities through in vitro, ex vivo, and clinical efficacy tests. METHODS AGEs formation in both the cell-free BSA/glyoxal system and glucose/glyoxal-treated human epidermal keratinocytes was measured, while the degradation of pre-formed BSA/AGEs by keratinocytes was assessed. Anti-glycation and anti-inflammatory effects were further examined using an ex vivo human skin explant model. Clinical anti-aging effects were analyzed by assessing skin AGE levels, melanin and erythema indices, skin elasticity, and skin hydration levels. RESULTS The tested ingredient inhibited AGE formation and accelerated the degradation of pre-formed AGEs in vitro. A significant reduction in skin AGE levels, reduction of skin melanin and erythema indices, and improvement of skin elasticity and hydration in healthy volunteers were observed after 2 and 4 weeks of test product application. CONCLUSION A newly synthesized antioxidant with autophagy-stimulating activity exhibited significant anti-glycation efficacy in both in vitro and clinical studies, suggesting its potential as an effective skin anti-aging ingredient.
Collapse
Affiliation(s)
- Kayoung Shin
- Research Team, Incospharm Corp, Daejeon, South Korea
| | - Yeonjae Kim
- Research Team, Incospharm Corp, Daejeon, South Korea
| | - Sungwoo Kim
- Research Team, Incospharm Corp, Daejeon, South Korea
- Department of Dermatology, Chungnam National University Sejong Hospital, Sejong, South Korea
| | - Hyun Jung Kim
- Department of Dermatology, Chungnam National University Sejong Hospital, Sejong, South Korea
| | - Sekyoo Jeong
- Department of Dermatology, Chungnam National University Sejong Hospital, Sejong, South Korea
| | - Mi Jang
- Department of Chemical & Biological Engineering, Hanbat National University, Daejeon, South Korea
| | - Jeong Ho Park
- Department of Chemical & Biological Engineering, Hanbat National University, Daejeon, South Korea
| | - Gaewon Nam
- Bio-Living Engineering Major, Global Leaders College, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Chen X, Zhou F, Lin Y, Xia Y, Zhang J, Hou W, Sun Y, Lai W, Zheng Y. MiR-4298 and lncKRTAP5-6-3 regulated Cathepsin D expression through ERK-MAPK signaling pathway in chronic UVB-damaged HaCaT cells. Front Med (Lausanne) 2025; 11:1485224. [PMID: 39871835 PMCID: PMC11769817 DOI: 10.3389/fmed.2024.1485224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/23/2024] [Indexed: 01/29/2025] Open
Abstract
Objective MiRNAs and lncRNAs are important regulators in the process of skin photoaging. In this study, we investigated the expression changes and interactions between miR4298 and lncKRTAP5-6-3 in chronically UVB-damaged human keratinocyte cell line (HaCaT) cells and explored miR4298-MAPK/ERK signaling pathway-Cathepsin D-lncKRTAP5-6-3 mechanisms in photoaging cells. Methods HaCaT cells were irradiated with 12 mJ/cm2 UVB once a day for 7 days. miR-4298 mimics and miR-4298 inhibitors were transfected into HaCaT cells by lipo3000 transfection reagent, and the HaCaT cells were divided into three groups: blank control group; UVB-damaged group; and UVB damage+miR-4298 regulation (overexpression or inhibition) group. The expression levels of miR4298 and lncKRTAP5-6-3 were quantitatively analyzed using RT-PCR, while the expression of Cathepsin D and MAPK/ERK signaling pathway proteins was detected using Western blot. Results After 7 consecutive days of UVB irradiation, the expression of miR-4298 decreased by 0.64 ± 0.06 (P < 0.001) compared to the un-irradiated HaCaT cells, and the expression of the KRTAP5-6-3 decreased by 0.80 ± 0.13 (P < 0.001) compared to the control group. The expression of p-ERK signaling was increased by 0.9437 ± 0.1186 (P < 0.0001), and Cathepsin D was decreased by 0.6163 ± 0.075 (P < 0.0001). In HaCaT cells transfected with miR-4298 mimics and then irradiated by UVB for 7 days, the expression of lncKRTAP5-6-3 was increased to 0.5114 ± 0.1438 (P < 0.05)-fold, and the phosphorylation level of ERK signaling was decreased by 0.3880 ± 0.1185 (P < 0.01), while Cathepsin D expression was increased by 0.2617 ± 0.0749 (P < 0.0001) compared to the UVB-damaged group. In HaCaT cells transfected with miR-4298 inhibitors and then irradiated by UVB for 7 days, lncKRTAP5-6-3 was decreased by 0.1697 ± 0.1383, the phosphorylation level of ERK signaling was increased by 1.096 ± 0.7836 (P < 0.05), while Cathepsin D expression was decreased by 0.05197 ± 0.24827 compared to the UVB-damaged group. Conclusion The synergistic effects of miR4298 and lncKRTAP5-6-3 play important roles in chronic UVB-damaged HaCaT cells by regulating the MAPK/ERK signaling pathway and Cathepsin D expression. This study presents novel targets for intervening in chronic ultraviolet damage (photoaging) skin and UV-related dermatoses.
Collapse
Affiliation(s)
- Xinling Chen
- Department of Dermato-Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Feng Zhou
- Department of Dermato-Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yao Lin
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yue Xia
- Department of Dermato-Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie Zhang
- Department of Dermato-Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenyi Hou
- Department of Dermato-Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Sun
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Lai
- Department of Dermato-Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yue Zheng
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Li D, Zhang G, Wang Z, Guo J, Liu Y, Lu Y, Qin Z, Xu Y, Cao C, Wang B, Guo Q, Wang Y, Liu G, Cui X, Zhang J, Tang J. Idebenone attenuates ferroptosis by inhibiting excessive autophagy via the ROS-AMPK-mTOR pathway to preserve cardiac function after myocardial infarction. Eur J Pharmacol 2023; 943:175569. [PMID: 36740037 DOI: 10.1016/j.ejphar.2023.175569] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of mortality worldwide. As a type of CVDs, myocardial infarction (MI) induces ischemia hypoxia, which leads to excessive reactive oxygen species (ROS), resulting in multiple cell deaths and contributing to the subsequent development of heart failure or premature death. Recent evidence indicates that ROS-induced lipid peroxidation promotes autophagy and ferroptosis, leading to the loss of healthy myocardium and resulting in the dysfunction of cardiac tissue. Theoretically, cardiac function would be preserved after MI by inhibiting autophagy and ferroptosis. As an analog of coenzyme Q10 (CoQ10) and a clinically approved drug, idebenone would be used to inhibit ferroptosis and preserve cardiac function due to its capacity to improve mitochondrial physiology with antioxidant and anti-inflammatory properties. Here, we confirmed that the addition of idebenone inhibited H2O2-induced and RSL3-induced ferroptosis. Furthermore, the ROS-AMPK-mTOR pathway axis was identified as the signaling pathway that idebenone stimulated to prevent excessive autophagy and consequent ferroptosis. In the MI animal model, idebenone demonstrated a cardioprotective role by regulating ROS-dependent autophagy and inhibiting ferroptosis, which paves the way for the future clinical translation of idebenone in MI management.
Collapse
Affiliation(s)
- Demin Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450018, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450018, China
| | - Zeyu Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450018, China
| | - Jiacheng Guo
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450018, China
| | - Yu Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Yongzheng Lu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450018, China
| | - Zhen Qin
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450018, China
| | - Yanyan Xu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450018, China
| | - Chang Cao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450018, China
| | - Bo Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450018, China
| | - Qianqian Guo
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450018, China
| | - Yunzhe Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450018, China
| | - Guozhen Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Xiaolin Cui
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| | - Jinying Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450018, China.
| | - Junnan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, 450018, China.
| |
Collapse
|
4
|
Ma J, Teng Y, Huang Y, Tao X, Fan Y. Autophagy plays an essential role in ultraviolet radiation-driven skin photoaging. Front Pharmacol 2022; 13:864331. [PMID: 36278173 PMCID: PMC9582953 DOI: 10.3389/fphar.2022.864331] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Photoaging is characterized by a chronic inflammatory response to UV light. One of the most prominent features of cutaneous photoaging is wrinkling, which is due primarily to a loss of collagen fibers and deposits of abnormal degenerative elastotic material within the dermis (actinic elastosis). These changes are thought to be mediated by inflammation, with subsequent upregulation of extracellular matrix-degrading proteases and down-regulation of collagen synthesis. Autophagy is a vital homeostatic cellular process of either clearing surplus or damaged cell components notably lipids and proteins or recycling the content of the cells’ cytoplasm to promote cell survival and adaptive responses during starvation and other oxidative and/or genotoxic stress conditions. Autophagy may also become a means of supplying nutrients to maintain a high cellular proliferation rate when needed. It has been suggested that loss of autophagy leads to both photodamage and the initiation of photoaging in UV exposed skin. Moreover, UV radiation of sunlight is capable of regulating a number of autophagy-linked genes. This review will focus on the protective effect of autophagy in the skin cells damaged by UV radiation. We hope to draw attention to the significance of autophagy regulation in the prevention and treatment of skin photoaging.
Collapse
|
5
|
Modulation of autophagy, apoptosis and oxidative stress: a clue for repurposing metformin in photoaging. Inflammopharmacology 2022; 30:2521-2535. [PMID: 35913649 DOI: 10.1007/s10787-022-01041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/15/2022] [Indexed: 11/05/2022]
Abstract
Long-term sun exposure is the commonest cause of photoaging, where mutual interplay between autophagy, oxidative stress, and apoptosis is incriminated. In combating photoaging, pharmacological approaches targeted to modulate autophagy are currently gaining more ground. This study aimed to examine repurposing metformin use in such context with or without the antioxidant coenzyme Q10 (coQ10) in ultraviolet A (UVA) irradiation-induced skin damage. The study was conducted on 70 female CD1 mice that were randomly assigned into seven groups (10/group): normal control, vehicle-treated-UVA-exposed mice, three metformin UVA-exposed groups (Topical 1 and 10%, and oral 300 mg/kg), topical coQ10 (1%)-treated mice, and combined oral metformin with topical coQ10-treated UVA-exposed mice. After UVA-exposure for 10 weeks (3 times/week), macroscopic signs of photoaging were evaluated. Mice were then euthanized, and the skin was harvested for biochemical estimation of markers for oxidative stress, inflammation, matrix breakdown, and lysosomal function. Histopathological signs of photoaging were also evaluated with immunohistochemical detection of associated changes in autophagic and apoptotic markers. Metformin, mainly by topical application, improved clinical and histologic signs of photoaging. This was associated with suppression of the elevated oxidative stress, IL-6, matrix metalloproteinase 1, and caspase, with induction of cathepsin D and subsequent change in anti-LC3 and P62 staining in skin tissue. In addition to metformin antioxidant, anti-inflammatory, and antiapoptotic activities, its anti-photoaging effect is mainly attributed to enhancing autophagic flux by inducing cathepsin D. Its protective effect is boosted by coQ10, which supports their potential use in photoaging.
Collapse
|
6
|
Wu M, Zhang M, Zhang Y, Li Z, Li X, Liu Z, Liu H, Li X. Relationship between lysosomal dyshomeostasis and progression of diabetic kidney disease. Cell Death Dis 2021; 12:958. [PMID: 34663802 PMCID: PMC8523726 DOI: 10.1038/s41419-021-04271-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022]
Abstract
Lysosomes are organelles involved in cell metabolism, waste degradation, and cellular material circulation. They play a key role in the maintenance of cellular physiological homeostasis. Compared with the lysosomal content of other organs, that of the kidney is abundant, and lysosomal abnormalities are associated with the occurrence and development of certain renal diseases. Lysosomal structure and function in intrinsic renal cells are impaired in diabetic kidney disease (DKD). Promoting lysosomal biosynthesis and/or restoring lysosomal function can repair damaged podocytes and proximal tubular epithelial cells, and delay the progression of DKD. Lysosomal homeostasis maintenance may be advantageous in alleviating DKD. Here, we systematically reviewed the latest advances in the relationship between lysosomal dyshomeostasis and progression of DKD based on recent literature to further elucidate the mechanism of renal injury in diabetes mellitus and to highlight the application potential of lysosomal homeostasis maintenance as a new prevention and treatment strategy for DKD. However, research on screening effective interventions for lysosomal dyshomeostasis is still in its infancy, and thus should be the focus of future research studies. The screening out of cell-specific lysosomal function regulation targets according to the different stages of DKD, so as to realize the controllable targeted regulation of cell lysosomal function during DKD, is the key to the successful clinical development of this therapeutic strategy.
Collapse
Affiliation(s)
- Man Wu
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Minjie Zhang
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Yaozhi Zhang
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Zixian Li
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Xingyu Li
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Zejian Liu
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Huafeng Liu
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China.
| | - Xiaoyu Li
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China.
| |
Collapse
|
7
|
Lee AY. Skin Pigmentation Abnormalities and Their Possible Relationship with Skin Aging. Int J Mol Sci 2021; 22:ijms22073727. [PMID: 33918445 PMCID: PMC8038212 DOI: 10.3390/ijms22073727] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
Skin disorders showing abnormal pigmentation are often difficult to manage because of their uncertain etiology or pathogenesis. Abnormal pigmentation is a common symptom accompanying aging skin. The association between skin aging and skin pigmentation abnormalities can be attributed to certain inherited disorders characterized by premature aging and abnormal pigmentation in the skin and some therapeutic modalities effective for both. Several molecular mechanisms, including oxidative stress, mitochondrial DNA mutations, DNA damage, telomere shortening, hormonal changes, and autophagy impairment, have been identified as involved in skin aging. Although each of these skin aging-related mechanisms are interconnected, this review examined the role of each mechanism in skin hyperpigmentation or hypopigmentation to propose the possible association between skin aging and pigmentation abnormalities.
Collapse
Affiliation(s)
- Ai-Young Lee
- Department of Dermatology, College of Medicine, Dongguk University Ilsan Hospital, 814 Siksa-dong, Ilsandong-gu, Goyang-si 410-773, Gyeonggi-do, Korea
| |
Collapse
|
8
|
Gromkowska-Kępka KJ, Puścion-Jakubik A, Markiewicz-Żukowska R, Socha K. The impact of ultraviolet radiation on skin photoaging - review of in vitro studies. J Cosmet Dermatol 2021; 20:3427-3431. [PMID: 33655657 PMCID: PMC8597149 DOI: 10.1111/jocd.14033] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 01/04/2023]
Abstract
Background Photoaging, ultra violet (UV) induced skin aging is a gradual process that depends on the time and intensity of solar radiation. Aim The aim of this paper was to review of the literature focused on in vitro studies explaining the mechanisms of photoaging. Methods Electronic databases, including PubMed and MEDLINE, were searched for in vitro studies on the importance of UV radiation in the skin photoaging process of peer‐reviewed scientific journals. Only articles available in English and full version publications were considered for this review. Results Three main modes of UV radiation action on skin cells which lead to photoaging, there are changes in cell metabolism, induction of oxidative stress due to the change in enzyme activity. Conclusion The information gathered in this publication will help to better understand the complex and multidirectional mechanism of skin photoaging, which will contribute to the development of research on potential cosmetic products that provide effective and safe sun protection or repair damage caused by UV radiation.
Collapse
Affiliation(s)
| | | | | | - Katarzyna Socha
- Department of Bromatology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
9
|
Bai GL, Wang P, Huang X, Wang ZY, Cao D, Liu C, Liu YY, Li RL, Chen AJ. Rapamycin Protects Skin Fibroblasts From UVA-Induced Photoaging by Inhibition of p53 and Phosphorylated HSP27. Front Cell Dev Biol 2021; 9:633331. [PMID: 33614662 PMCID: PMC7892968 DOI: 10.3389/fcell.2021.633331] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/14/2021] [Indexed: 11/15/2022] Open
Abstract
Skin aging caused by UV radiation is called photoaging is characterized by skin roughness and dryness accompanied by a significant reduction of dermal collagen. Rapamycin is a macrolide immunosuppressant which has been shown to exhibit “anti-aging” effects in cells and organisms, however, its roles in the skin photoaging remains unclear. Here, we investigate the role of rapamycin and HSP27, which we have previously identified as an inhibitor of UV-induced apoptosis and senescence in HaCat cells, in a UVA-induced photoaging model of primary human dermal fibroblasts (HDFs). Results from senescence-associated beta-galactosidase (SA-β-gal) staining revealed that rapamycin significantly reduced senescence in UVA-treated HDFs. In addition, treatment with rapamycin significantly increased cell autophagy levels, decreased the expression of p53 and phosphorylated HSP27, and reduced genotoxic and oxidative cellular stress levels in UVA-induced HDFs. Knockdown of HSP27 resulted in a significant increase of MMP-1 and MMP-3 as well as a decrease in type I collagen expression. Rapamycin mitigated these effects by activation of the classical TGF-β/Smad signaling pathway and increasing the transcriptional activity of MAPK/AP-1. Taken together, these results suggest that rapamycin may potentially serve as a preventive and therapeutic agent for UVA-induced photoaging of the skin.
Collapse
Affiliation(s)
- Gen-Long Bai
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| | - Ping Wang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| | - Xin Huang
- Prescriptions Department, College of Traditional Chinese Medicine, Chongqing Medical University, Yuzhong, China
| | - Zi-Yue Wang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| | - Di Cao
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| | - Chuan Liu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| | - Yi-Yi Liu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| | - Ruo-Lin Li
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| | - Ai-Jun Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| |
Collapse
|
10
|
Mostafa DK, Omar SI, Abdellatif AA, Sorour OA, Nayel OA, Abod Al Obaidi MR. Differential Modulation of Autophagy Contributes to the Protective Effects of Resveratrol and Co-Enzyme Q10 in Photoaged Mice. Curr Mol Pharmacol 2021; 14:458-468. [PMID: 32744981 DOI: 10.2174/1874467213666200730114547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In photoaging, the accumulation of ultraviolet (UV)-induced oxidative damage leads to the characteristic hallmarks of aging. Here arises the importance of autophagy as a cellular degradation process that cleans the cells of defective or aged organelles and macromolecules, thus maintaining cellular homeostasis. In spite of this, the exact impact of autophagy in photoaging is still elusive. OBJECTIVE To evaluate the protective effects of resveratrol and/or co-enzyme-Q10 against the UVA-induced alterations and to explore the role of autophagy in their proposed benefits. METHODS Sixty female mice were randomly divided into normal control, untreated UVA-exposed, resveratrol (50mg/kg), co-enzyme-Q10 (100mg/kg), and resveratrol/co-enzyme-Q10-treated UVA-- exposed groups. Clinical signs of photoaging were evaluated using a modified grading score and the pinch test. Skin malondialdehyde and reduced glutathione were assessed as markers of oxidative stress. Tissues were examined for histopathological signs of photodamage, and autophagic changes were determined by immunohistochemical detection of LC3 and P62 in the different cells of the skin. RESULTS UVA-exposure increased the oxidative stress with subsequent epidermal and dermal injury. This was associated with the stimulation of autophagy in the keratinocytes and inhibition of autophagic flux in the fibroblasts and infiltrating macrophages. Both drugs corrected the impaired pinch test, macro-and microscopic changes, and exhibited distinct staining patterns with anti-LC3 and P62 in the different cell types denoting autophagic modulation. CONCLUSION Changes in autophagic flux are strongly implicated in photoaging associated skin damage and the differential modulation of autophagy by resveratrol and, to a lesser extent by Co-enzyme- Q10, is partially involved in their therapeutic benefits.
Collapse
Affiliation(s)
- Dalia K Mostafa
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Shaimaa I Omar
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Amany A Abdellatif
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Osama A Sorour
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Omnia A Nayel
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
11
|
Tsubone TM, Martins WK, Franco MSF, Silva MN, Itri R, Baptista MS. Cellular compartments challenged by membrane photo-oxidation. Arch Biochem Biophys 2020; 697:108665. [PMID: 33159891 DOI: 10.1016/j.abb.2020.108665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022]
Abstract
The lipid composition impacts directly on the structure and function of the cytoplasmic as well as organelle membranes. Depending on the type of membrane, specific lipids are required to accommodate, intercalate, or pack membrane proteins to the proper functioning of the cells/organelles. Rather than being only a physical barrier that separates the inner from the outer spaces, membranes are responsible for many biochemical events such as cell-to-cell communication, protein-lipid interaction, intracellular signaling, and energy storage. Photochemical reactions occur naturally in many biological membranes and are responsible for diverse processes such as photosynthesis and vision/phototaxis. However, excessive exposure to light in the presence of absorbing molecules produces excited states and other oxidant species that may cause cell aging/death, mutations and innumerable diseases including cancer. At the same time, targeting key compartments of diseased cells with light can be a promising strategy to treat many diseases in a clinical procedure called Photodynamic Therapy. Here we analyze the relationships between membrane alterations induced by photo-oxidation and the biochemical responses in mammalian cells. We specifically address the impact of photosensitization reactions in membranes of different organelles such as mitochondria, lysosome, endoplasmic reticulum, and plasma membrane, and the subsequent responses of eukaryotic cells.
Collapse
Affiliation(s)
| | | | - Marcia S F Franco
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | | | - Rosangela Itri
- Department of Applied Physics, Institute of Physics, University of São Paulo, SP, Brazil
| | - Mauricio S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil.
| |
Collapse
|