1
|
Hou Z, Wang L, Su D, Cai W, Zhu Y, Liu D, Huang S, Xu J, Pan Z, Tao J. Global MicroRNAs Expression Profile Analysis Reveals Possible Regulatory Mechanisms of Brain Injury Induced by Toxoplasma gondii Infection. Front Neurosci 2022; 16:827570. [PMID: 35360170 PMCID: PMC8961362 DOI: 10.3389/fnins.2022.827570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is an obligate intracellular parasitic protozoan that can cause toxoplasmosis in humans and other endotherms. T. gondii can manipulate the host gene expression profile by interfering with miRNA expression, which is closely associated with the molecular mechanisms of T. gondii-induced brain injury. However, it is unclear how T. gondii manipulates the gene expression of central nervous system (CNS) cells through modulation of miRNA expression in vivo during acute and chronic infection. Therefore, high-throughput sequencing was used to investigate expression profiles of brain miRNAs at 10, 25, and 50 days post-infection (DPI) in pigs infected with the Chinese I genotype T. gondii strain in this study. Compared with the control group 87, 68, and 135 differentially expressed miRNAs (DEMs) were identified in the infected porcine brains at 10, 25, and 50 DPI, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that a large number significantly enriched GO terms and KEGG pathways were found, and were mostly associated with stimulus or immune response, signal transduction, cell death or apoptosis, metabolic processes, immune system or diseases, and cancers. miRNA–gene network analysis revealed that the crucial connecting nodes, including DEMs and their target genes, might have key roles in the interactions between porcine brain and T. gondii. These results suggest that the regulatory strategies of T. gondii are involved in the modulation of a variety of host cell signaling pathways and cellular processes, containing unfolded protein response (UPR), oxidative stress (OS), autophagy, apoptosis, tumorigenesis, and inflammatory responses, by interfering with the global miRNA expression profile of CNS cells, allowing parasites to persist in the host CNS cells and contribute to pathological damage of porcine brain. To our knowledge, this is the first report on miRNA expression profile in porcine brains during acute and chronic T. gondii infection in vivo. Our results provide new insights into the mechanisms underlying T. gondii-induced brain injury during different infection stages and novel targets for developing therapeutic agents against T. gondii.
Collapse
Affiliation(s)
- Zhaofeng Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Lele Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Dingzeyang Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Weimin Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Yu Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Siyang Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Zhiming Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
- *Correspondence: Jianping Tao,
| |
Collapse
|
2
|
Du H, Xu Y, Zhu L. Role of Semaphorins in Ischemic Stroke. Front Mol Neurosci 2022; 15:848506. [PMID: 35350431 PMCID: PMC8957939 DOI: 10.3389/fnmol.2022.848506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is one of the major causes of neurological morbidity and mortality in the world. Although the management of ischemic stroke has been improved significantly, it still imposes a huge burden on the health and property. The integrity of the neurovascular unit (NVU) is closely related with the prognosis of ischemic stroke. Growing evidence has shown that semaphorins, a family of axon guidance cues, play a pivotal role in multiple pathophysiological processes in NVU after ischemia, such as regulating the immune system, angiogenesis, and neuroprotection. Modulating the NVU function via semaphorin signaling has a potential to develop a novel therapeutic strategy for ischemic stroke. We, therefore, review recent progresses on the role of semphorin family members in neurons, glial cells and vasculature after ischemic stroke.
Collapse
Affiliation(s)
- Huaping Du
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Yuan Xu
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Li Zhu
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
- Suzhou Key Laboratory of Thrombosis and Vascular Biology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Collaborative Innovation Center of Hematology of Jiangsu Province, National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- *Correspondence: Li Zhu,
| |
Collapse
|
3
|
Circulating HMGB1 is elevated in veterans with Gulf War Illness and triggers the persistent pro-inflammatory microglia phenotype in male C57Bl/6J mice. Transl Psychiatry 2021; 11:390. [PMID: 34253711 PMCID: PMC8275600 DOI: 10.1038/s41398-021-01517-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Gulf War Illness (GWI) is a chronic, multi-symptom peripheral and CNS condition with persistent microglial dysregulation, but the mechanisms driving the continuous neuroimmune pathology are poorly understood. The alarmin HMGB1 is an autocrine and paracrine pro-inflammatory signal, but the role of circulating HMGB1 in persistent neuroinflammation and GWI remains largely unknown. Using the LPS model of the persistent microglial pro-inflammatory response, male C57Bl/6J mice injected with LPS (5 mg/kg IP) exhibited persistent changes in microglia morphology and elevated pro-inflammatory markers in the hippocampus, cortex, and midbrain 7 days after LPS injection, while the peripheral immune response had resolved. Ex vivo serum analysis revealed an augmented pro-inflammatory response to LPS when microglia cells were cultured with the 7-day LPS serum, indicating the presence of bioactive circulating factors that prime the microglial pro-inflammatory response. Elevated circulating HMGB1 levels were identified in the mouse serum 7 days after LPS administration and in the serum of veterans with GWI. Tail vein injection of rHMGB1 in male C57Bl/6 J mice elevated TNFα mRNA levels in the liver, hippocampus, and cortex, demonstrating HMGB1-induced peripheral and CNS effects. Microglia isolated at 7 days after LPS injection revealed a unique transcriptional profile of 17 genes when compared to the acute 3 H LPS response, 6 of which were also upregulated in the midbrain by rHMGB1, highlighting a distinct signature of the persistent pro-inflammatory microglia phenotype. These findings indicate that circulating HMGB1 is elevated in GWI, regulates the microglial neuroimmune response, and drives chronic neuroinflammation that persists long after the initial instigating peripheral stimulus.
Collapse
|
4
|
Sema4D Aggravated LPS-Induced Injury via Activation of the MAPK Signaling Pathway in ATDC5 Chondrocytes. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8691534. [PMID: 32382577 PMCID: PMC7196969 DOI: 10.1155/2020/8691534] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022]
Abstract
Osteoarthritis (OA) is the most common chronic degenerative joint disease, and it remains the main cause of chronic disability in elderly individuals. Sema4D (semaphorin 4D) is involved in the immune system and related to bone injury, osteoporosis, osteoblast differentiation, and rheumatoid arthritis. However, the role of Sema4D in OA remains unclear. Hence, the LPS-stimulated chondrocyte cell injury model was constructed in this study to investigate the role of Sema4D in OA development. The results showed that Sema4D was increased in LPS-treated ATDC5 cells, and the knockdown of Sema4D suppressed the decline of cell viability, the increase of cell apoptosis, and the increase of IL-6, IL-1β, and TNF-α secretion in ATDC5 cells induced by LPS. Meanwhile, Sema4D overexpression aggravated the cell injury triggered by LPS, and inhibiting Plexin B1 partly abolished the effect of Sema4D overexpression on LPS-induced chondrocyte injury. Furthermore, silencing of Sema4D blocked the activation of the MAPK pathway in LPS-stimulated ATDC5 cells. Enhanced Sema4D promoted the activation of the MAPK pathway in LPS-stimulated ATDC5 cells. What is more, inhibiting the MAPK signaling pathway abolished the promoting effect of Sema4D overexpression on LPS-induced chondrocyte injury. Therefore, our study suggested that the knockdown of Sema4D protects ATDC5 cells against LPS-induced injury through inactivation of the MAPK signaling pathway via interacting with Plexin B1.
Collapse
|