1
|
Wang S, Wan L, Zhang X, Fang H, Zhang M, Li F, Yan D. ETS-1 in tumor immunology: implications for novel anti-cancer strategies. Front Immunol 2025; 16:1526368. [PMID: 40181983 PMCID: PMC11965117 DOI: 10.3389/fimmu.2025.1526368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
ETS-1, a key member of the Erythroblast Transformation-Specific (ETS) transcription factor family, plays an important role in cell biology and medical research due to its wide expression profile and strong transcriptional regulation ability. It regulates fundamental biological processes, including cell proliferation, differentiation, and apoptosis, and is involved in tumorigenesis and metastasis, promoting malignant behaviors such as angiogenesis, matrix degradation, and cell migration. Given the association between ETS-1 overexpression and the aggressive characteristics of multiple malignancies, it represents a promising therapeutic target in cancer treatment. This study aims to systematically analyze the role of ETS-1 within the tumor immune microenvironment, elucidating its mechanisms in cancer initiation, progression, and metastasis. It also investigates the differential expression of ETS-1 across tumor tissues and adjacent normal tissues, exploring its potential as a molecular marker for tumor diagnosis and prognosis.
Collapse
Affiliation(s)
- SiYu Wang
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - Lei Wan
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - XiaoJun Zhang
- Academic Affairs Office, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - HaoXiang Fang
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - MengYu Zhang
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - Feng Li
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - DaWei Yan
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| |
Collapse
|
2
|
Zhang Y, Tang J, Jiang C, Yi H, Guang S, Yin G, Wang M. Metabolic reprogramming in cancer and senescence. MedComm (Beijing) 2025; 6:e70055. [PMID: 40046406 PMCID: PMC11879902 DOI: 10.1002/mco2.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 04/01/2025] Open
Abstract
The rising trend in global cancer incidence has caused widespread concern, one of the main reasons being the aging of the global population. Statistical data show that cancer incidence and mortality rates show a clear upward trend with age. Although there is a commonality between dysregulated nutrient sensing, which is one of the main features of aging, and metabolic reprogramming of tumor cells, the specific regulatory relationship is not clear. This manuscript intends to comprehensively analyze the relationship between senescence and tumor metabolic reprogramming; as well as reveal the impact of key factors leading to cellular senescence on tumorigenesis. In addition, this review summarizes the current intervention strategies targeting nutrient sensing pathways, as well as the clinical cases of treating tumors targeting the characteristics of senescence with the existing nanodelivery research strategies. Finally, it also suggests sensible dietary habits for those who wish to combat aging. In conclusion, this review attempts to sort out the link between aging and metabolism and provide new ideas for cancer treatment.
Collapse
Affiliation(s)
- Yuzhu Zhang
- Department of PathologyXiangya HospitalSchool of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Jiaxi Tang
- Department of PathologyXiangya HospitalSchool of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Can Jiang
- Department of PathologyXiangya HospitalSchool of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Hanxi Yi
- Department of PathologyXiangya HospitalSchool of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Shu Guang
- Department of PathologyXiangya HospitalSchool of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Gang Yin
- Department of PathologyXiangya HospitalSchool of Basic Medical SciencesCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Maonan Wang
- Department of PathologyXiangya HospitalSchool of Basic Medical SciencesCentral South UniversityChangshaChina
| |
Collapse
|
3
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
4
|
Jia Y, Zou K, Zou L. Research progress of metabolomics in cervical cancer. Eur J Med Res 2023; 28:586. [PMID: 38093395 PMCID: PMC10717910 DOI: 10.1186/s40001-023-01490-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
INTRODUCTION Cervical cancer threatens women's health seriously. In recent years, the incidence of cervical cancer is on the rise, and the age of onset tends to be younger. Prevention, early diagnosis and specific treatment have become the main means to change the prognosis of cervical cancer patients. Metabolomics research can directly reflect the changes of biochemical processes and microenvironment in the body, which can provide a comprehensive understanding of the changes of metabolites in the process of disease occurrence and development, and provide new ways for the prevention and diagnosis of diseases. OBJECTIVES The aim of this study is to review the metabolic changes in cervical cancer and the application of metabolomics in the diagnosis and treatment. METHODS PubMed, Web of Science, Embase and Scopus electronic databases were systematically searched for relevant studies published up to 2022. RESULTS With the emergence of metabolomics, metabolic regulation and cancer research are further becoming a focus of attention. By directly reflecting the changes in the microenvironment of the body, metabolomics research can provide a comprehensive understanding of the patterns of metabolites in the occurrence and development of diseases, thus providing new ideas for disease prevention and diagnosis. CONCLUSION With the continuous, in-depth research on metabolomics research technology, it will bring more benefits in the screening, diagnosis and treatment of cervical cancer with its advantages of holistic and dynamic nature.
Collapse
Affiliation(s)
- Yuhan Jia
- Department of Radiotherapy, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Kun Zou
- Department of Radiotherapy, The First Hospital of Dalian Medical University, Dalian, Liaoning Province, China.
| | - Lijuan Zou
- Department of Radiotherapy, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China.
| |
Collapse
|
5
|
Li J, Wan C, Li X, Quan C, Li X, Wu X. Characterization of tumor microenvironment and tumor immunology based on the double-stranded RNA-binding protein related genes in cervical cancer. J Transl Med 2023; 21:647. [PMID: 37735483 PMCID: PMC10515034 DOI: 10.1186/s12967-023-04505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Cervical cancer is one of the most common gynecological cancers threatening women's health worldwide. Double-stranded RNA-binding proteins (dsRBPs) regulate innate immunity and are therefore believed to be involved in virus-related malignancies, however, their role in cervical cancer is not well known. METHODS We performed RNA-seq of tumor samples from cervical cancer patients in local cohort and also assessed the RNA-seq and clinical data derived from public datasets. By using single sample Gene Set Enrichment Analysis (ssGSEA) and univariate Cox analysis, patients were stratified into distinct dsRBP clusters. Stepwise Cox and CoxBoost were performed to construct a risk model based on optimal dsRBPs clusters-related differentially expressed genes (DEGs), and GSE44001 and CGCI-HTMCP-CC were employed as two external validation cohorts. Single cell RNA sequencing data from GSE168652 and Scissor algorithm were applied to evaluated the signature-related cell population. RESULTS The expression of dsRBP features was found to be associated with HPV infection and carcinogenesis in CESC. However, only Adenosine deaminases acting on RNA (ADAR) and Dicer, Drosha, and Argonautes (DDR) exhibited significant correlations with the overall survival (OS) of CESC patients. Based on these findings, CESC patients were divided into three dsRBP clusters. Cluster 3 showed superior OS but lower levels of ADAR and DDR. Additionally, Cluster 3 demonstrated enhanced innate immunity, with significantly higher activity in cancer immunity cycles, immune scores, and levels of tumor-infiltrating immune cells, particularly CD8+ T cells. Furthermore, a risk model based on nine dsRBP cluster-related DEGs was established. The accuracy of survival prediction for 1 to 5 years was consistently above 0.78, and this model's robust predictive capacity was confirmed by two external validation sets. The low-risk group exhibited significantly higher levels of immune checkpoints, such as PDCD1 and CTLA4, as well as a higher abundance of CD8+ T cells. Analysis of single-cell sequencing data revealed a significant association between the dsRBP signature and glycolysis. Importantly, low-risk patients showed improved OS and a higher response rate to immunotherapy, along with enduring clinical benefits from concurrent chemoradiotherapy. CONCLUSIONS dsRBP played a crucial role in the regulation of prognosis and tumor immunology in cervical cancer, and its prognostic signature provides a strategy for risk stratification and immunotherapy evaluation.
Collapse
Affiliation(s)
- Jin Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, No. 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chong Wan
- Precision Medicine Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - Xiaoqi Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, No. 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chenlian Quan
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, No. 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoqiu Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, No. 270 Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Zhang Z, Peng J, Li B, Wang Z, Wang H, Wang Y, Hong L. HOXA1 promotes aerobic glycolysis and cancer progression in cervical cancer. Cell Signal 2023; 109:110747. [PMID: 37286120 DOI: 10.1016/j.cellsig.2023.110747] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
As a hallmark for cancer, aerobic glycolysis, also known as the Warburg effect contributes to tumor progression. However, the roles of aerobic glycolysis on cervical cancer remain elusive. In this work, we identified transcription factor HOXA1 as a novel regulator of aerobic glycolysis. High expression of HOXA1 is closely associated with poor outcome of patients. And, altered HOXA1 expression enhance or reduce aerobic glycolysis and progression in cervical cancer. Mechanistically, HOXA1 directly regulates the transcriptional activity of ENO1 and PGK1, thus induce glycolysis and promote cancer progression. Moreover, therapeutic knockdown of HOXA1 results in reduce aerobic glycolysis and inhibits cervical cancer progression in vivo and in vitro. In conclusion, these data indicate a therapeutic role of HOXA1 inhibits aerobic glycolysis and cervical cancer progression.
Collapse
Affiliation(s)
- Zihui Zhang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Jiaxin Peng
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Bingshu Li
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Zhi Wang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Haoyu Wang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Ying Wang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China.
| |
Collapse
|
7
|
Deng YJ, Li Z, Wang B, Li J, Ma J, Xue X, Tian X, Liu QC, Zhang Y, Yuan B. Immune-related gene IL17RA as a diagnostic marker in osteoporosis. Front Genet 2023; 14:1219894. [PMID: 37600656 PMCID: PMC10436292 DOI: 10.3389/fgene.2023.1219894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
Objectives: Bone immune disorders are major contributors to osteoporosis development. This study aims to identify potential diagnostic markers and molecular targets for osteoporosis treatment from an immunological perspective. Method: We downloaded dataset GSE56116 from the Gene Expression Omnibus database, and identified differentially expressed genes (DEGs) between normal and osteoporosis groups. Subsequently, differentially expressed immune-related genes (DEIRGs) were identified, and a functional enrichment analysis was performed. A protein-protein interaction network was also constructed based on data from STRING database to identify hub genes. Following external validation using an additional dataset (GSE35959), effective biomarkers were confirmed using RT-qPCR and immunohistochemical (IHC) staining. ROC curves were constructed to validate the diagnostic values of the identified biomarkers. Finally, a ceRNA and a transcription factor network was constructed, and a Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis was performed to explore the biological functions of these diagnostic markers. Results: In total, 307 and 31 DEGs and DEIRGs were identified, respectively. The enrichment analysis revealed that the DEIRGs are mainly associated with Gene Ontology terms of positive regulation of MAPK cascade, granulocyte chemotaxis, and cytokine receptor. protein-protein interaction network analysis revealed 10 hub genes: FGF8, KL, CCL3, FGF4, IL9, FGF9, BMP7, IL17RA, IL12RB2, CD40LG. The expression level of IL17RA was also found to be significantly high. RT-qPCR and immunohistochemical results showed that the expression of IL17RA was significantly higher in osteoporosis patients compared to the normal group, as evidenced by the area under the curve Area Under Curve of 0.802. Then, we constructed NEAT1-hsa-miR-128-3p-IL17RA, and SNHG1-hsa-miR-128-3p-IL17RA ceRNA networks in addition to ERF-IL17RA, IRF8-IL17RA, POLR2A-IL17RA and ERG-IL17RA transcriptional networks. Finally, functional enrichment analysis revealed that IL17RA was involved in the development and progression of osteoporosis by regulating local immune and inflammatory processes in bone tissue. Conclusion: This study identifies the immune-related gene IL17RA as a diagnostic marker of osteoporosis from an immunological perspective, and provides insight into its biological function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bin Yuan
- Department of Spine Surgery, Xi’an Daxing Hospital, Yanan University, Xi’an, China
| |
Collapse
|
8
|
Tong X, Tang R, Xu J, Wang W, Zhao Y, Yu X, Shi S. Liquid-liquid phase separation in tumor biology. Signal Transduct Target Ther 2022; 7:221. [PMID: 35803926 PMCID: PMC9270353 DOI: 10.1038/s41392-022-01076-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) is a novel principle for explaining the precise spatial and temporal regulation in living cells. LLPS compartmentalizes proteins and nucleic acids into micron-scale, liquid-like, membraneless bodies with specific functions, which were recently termed biomolecular condensates. Biomolecular condensates are executors underlying the intracellular spatiotemporal coordination of various biological activities, including chromatin organization, genomic stability, DNA damage response and repair, transcription, and signal transduction. Dysregulation of these cellular processes is a key event in the initiation and/or evolution of cancer, and emerging evidence has linked the formation and regulation of LLPS to malignant transformations in tumor biology. In this review, we comprehensively summarize the detailed mechanisms of biomolecular condensate formation and biophysical function and review the recent major advances toward elucidating the multiple mechanisms involved in cancer cell pathology driven by aberrant LLPS. In addition, we discuss the therapeutic perspectives of LLPS in cancer research and the most recently developed drug candidates targeting LLPS modulation that can be used to combat tumorigenesis.
Collapse
Affiliation(s)
- Xuhui Tong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rong Tang
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yingjun Zhao
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Si Shi
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
LncRNA SNHG3 Facilitates the Malignant Phenotype of Cholangiocarcinoma Cells via the miR-3173-5p/ERG Axis. J Gastrointest Surg 2022; 26:802-812. [PMID: 34647226 DOI: 10.1007/s11605-021-05160-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/17/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Long noncoding RNA (lncRNA) small nucleolar RNA host gene 3 (SNHG3) is an oncogenic lncRNA that has been reported in many cancers, but the role of SNHG3 in cholangiocarcinoma (CCA) remains largely unknown. Bioinformatic analysis revealed a regulatory relationship among SNHG3, miR-3173-5p, and ERG. miR-3173-5p is a tumour suppressive miRNA, while ERG is an oncogene. In the present study, we focused on the regulatory effects and molecular mechanisms of SNHG3 in CCA. METHOD The expression of SNHG3 and miR-3173-5p was evaluated using qRT-PCR analysis. Knockdown of SNHG3 was achieved by shRNA. Cell viability was assessed by MTT assay. Migration and invasion were determined by Transwell assay. Flow cytometry was used to assess cell apoptosis. Western blots were applied to quantify protein levels. Furthermore, using RNA pulldown and dual luciferase assays, the interactions between SNHG3 and miR-3173-5p and between miR-3173-5p and ERG in CCA cells were validated. RESULTS SNHG3 was significantly upregulated in CCA cells compared with normal human intrahepatic biliary epithelial cells. Knockdown of SNHG3 inhibited the proliferation and migration of CCA cells. Mechanistically, SNHG3-sponged miR-3173-5p, thus releasing the repression of ERG by miR-3173-5p. Rescue experiments showed that the miR-3173-5p/ERG axis mediated the oncogenic effect of SNHG3. CONCLUSION Taken together, our data suggest that SNHG3 is a pleiotropic oncogenic lncRNA in CCA. Knockdown of SNHG3 expression suppressed malignant phenotypes in CCA cells via the miR-3173-5p/ERG axis.
Collapse
|
10
|
Han Y, Liu D, Li L. Increased expression of TAZ and associated upregulation of PD-L1 in cervical cancer. Cancer Cell Int 2021; 21:592. [PMID: 34736474 PMCID: PMC8567592 DOI: 10.1186/s12935-021-02287-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND As an important component of the Hippo pathway, WW domain-containing transcription regulator 1 (TAZ), is a transcriptional coactivator that is responsible for the progression of various types of cancers. Programmed cell death protein 1 (PD-1) receptors in activated T cells and their ligand programming death force 1 (PD-L1) are the main checkpoint signals that control T cell activity. Studies have shown high levels of PD-L1 in various cancers and that PD-L1/PD-1 signals to evade T-cell immunity. Recent data have demonstrated that TAZ can regulate the characteristics of cancer cells via PD-L1. Cervical cancer is a common gynecological disease worldwide. In this study, we attempted to evaluate the effects of TAZ and PD-L1 on cervical cancer. METHODS Hela cervical cancer cells were transfected with TAZ plasmid or TAZ siRNA or PD-L1 siRNA by using Lipofectamine 2000. The relationship between TAZ and PD-L1 in cervical cancer cells was determined by qRT-PCR and western blotting. The functional roles of TAZ were confirmed via CCK-8, Transwell and flow cytometry assays. Western blotting was utilized to observe the expression of BCL-2 and Caspase-3. The clinicopathological correlation of TAZ and PD-L1 was evaluated via relevant databases. RESULT TAZ is upregulated in cervical cancer and induces the growth and metastasis of cervical cancer cells by targeting PD-L1and inhibiting the ratio of apoptotic of cancer cells. High TAZ and PD-L1 expression was observed in different stage, grade, histological patterns, and ages of cervical cancer groups compared with normal cervix groups. Furthermore, high TAZ expression was positively correlated with the infiltration levels of immune cells and the expression of PD-L1.
Collapse
Affiliation(s)
- Yanyan Han
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Dandan Liu
- The Fourth Medical Center of The General Hospital of the Chinese People's Liberation Army, Beijing, 100048, China
| | - Lianhong Li
- Pathology Department of Dalian Medical University, Liaoning, 116044, China
| |
Collapse
|
11
|
E GX, Zhou DK, Zheng ZQ, Yang BG, Li XL, Li LH, Zhou RY, Nai WH, Jiang XP, Zhang JH, Hong QH, Ma YH, Chu MX, Gao HJ, Zhao YJ, Duan XH, He YM, Na RS, Han YG, Zeng Y, Jiang Y, Huang YF. Identification of a Goat Intersexuality-Associated Novel Variant Through Genome-Wide Resequencing and Hi-C. Front Genet 2021; 11:616743. [PMID: 33633772 PMCID: PMC7901718 DOI: 10.3389/fgene.2020.616743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Polled intersex syndrome (PIS) leads to reproductive disorders in goats and exerts a heavy influence on goat breeding. Since 2001, the core variant of an 11.7 kb deletion at ~129 Mb on chromosome 1 (CHI1) has been widely used as a genetic diagnostic criterion. In 2020, a ~0.48 Mb insertion within the PIS deletion was identified by sequencing in XX intersex goats. However, the suitability of this variation for the diagnosis of intersex goats worldwide and its further molecular genetic mechanism need to be clarified. Results: The whole-genome selective sweep of intersex goats from China was performed with whole-genome next-generation sequencing technology for large sample populations and a case–control study on interbreeds. A series of candidate genes related to the goat intersexuality phenotype were found. We further confirmed that a ~0.48 Mb duplicated fragment (including ERG and KCNJ15) downstream of the ~20 Mb PIS region was reversely inserted into the PIS locus in intersex Chinese goats and was consistent with that in European Saanen and Valais black-necked goats. High-throughput chromosome conformation capture (Hi-C) technology was then used to compare the 3D structures of the PIS variant neighborhood in CHI1 between intersex and non-intersex goats. A newly found structure was validated as an intrachromosomal rearrangement. This inserted duplication changed the original spatial structure of goat CHI1 and caused the appearance of several specific loop structures in the adjacent ~20 kb downstream region of FOXL2. Conclusions: Results suggested that the novel complex PIS variant genome was sufficient as a broad-spectrum clinical diagnostic marker of XX intersexuality in goats from Europe and China. A series of private dense loop structures caused by segment insertion into the PIS deletion might affect the expression of FOXL2 or other neighboring novel candidate genes. However, these structures require further in-depth molecular biological experimental verification. In general, this study provided new insights for future research on the molecular genetic mechanism underlying female-to-male sex reversal in goats.
Collapse
Affiliation(s)
- Guang-Xin E
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Dong-Ke Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhu-Qing Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bai-Gao Yang
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiang-Long Li
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinghuangdao, China
| | - Lan-Hui Li
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding, China
| | - Rong-Yan Zhou
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding, China
| | - Wen-Hui Nai
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xun-Ping Jiang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jia-Hua Zhang
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Qiong-Hua Hong
- Department of Herbivore Science, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Yue-Hui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ming-Xing Chu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hui-Jiang Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yong-Ju Zhao
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xing-Hai Duan
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yong-Meng He
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Ri-Su Na
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yan-Guo Han
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yan Zeng
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yong-Fu Huang
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
12
|
Anti-Warburg Effect of Melatonin: A Proposed Mechanism to Explain its Inhibition of Multiple Diseases. Int J Mol Sci 2021; 22:ijms22020764. [PMID: 33466614 PMCID: PMC7828708 DOI: 10.3390/ijms22020764] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Glucose is an essential nutrient for every cell but its metabolic fate depends on cellular phenotype. Normally, the product of cytosolic glycolysis, pyruvate, is transported into mitochondria and irreversibly converted to acetyl coenzyme A by pyruvate dehydrogenase complex (PDC). In some pathological cells, however, pyruvate transport into the mitochondria is blocked due to the inhibition of PDC by pyruvate dehydrogenase kinase. This altered metabolism is referred to as aerobic glycolysis (Warburg effect) and is common in solid tumors and in other pathological cells. Switching from mitochondrial oxidative phosphorylation to aerobic glycolysis provides diseased cells with advantages because of the rapid production of ATP and the activation of pentose phosphate pathway (PPP) which provides nucleotides required for elevated cellular metabolism. Molecules, called glycolytics, inhibit aerobic glycolysis and convert cells to a healthier phenotype. Glycolytics often function by inhibiting hypoxia-inducible factor-1α leading to PDC disinhibition allowing for intramitochondrial conversion of pyruvate into acetyl coenzyme A. Melatonin is a glycolytic which converts diseased cells to the healthier phenotype. Herein we propose that melatonin's function as a glycolytic explains its actions in inhibiting a variety of diseases. Thus, the common denominator is melatonin's action in switching the metabolic phenotype of cells.
Collapse
|
13
|
Chen B, Yuan Y, Sun L, Chen J, Yang M, Yin Y, Xu Y. MKL1 Mediates TGF-β Induced RhoJ Transcription to Promote Breast Cancer Cell Migration and Invasion. Front Cell Dev Biol 2020; 8:832. [PMID: 32984327 PMCID: PMC7478007 DOI: 10.3389/fcell.2020.00832] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022] Open
Abstract
Differential regulation of gene transcription contributes to cancer metastasis. We investigated the involvement of a Rho GTPase (RhoJ) in breast cancer metastasis focusing on the mechanism underlying RhoJ trans-activation by pro-metastatic cues. We report that expression of RhoJ was up-regulated in malignant breast cancer cells compared to more benign ones. Higher RhoJ expression was also detected in human breast cancer biopsy specimens of advanced stages. RhoJ depletion attenuated breast cancer cell migration and invasion in vitro and metastasis in vivo. The pro-metastatic stimulus TGF-β activated RhoJ via megakaryocytic leukemia 1 (MKL1). MKL1 interacted with and was recruited by ETS-related gene 1 (ERG1) to the RhoJ promoter to activate transcription. In conclusion, our data delineate a novel transcriptional pathway that contributes to breast cancer metastasis. Targeting the ERG1-MKL1-RhoJ axis may be considered as a reasonable approach to treat malignant breast cancer.
Collapse
Affiliation(s)
- Baoyu Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysioloy and Laboratory Center for Experimental Medicine, Nanjing Medical University, Nanjing, China
| | - Yibiao Yuan
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysioloy and Laboratory Center for Experimental Medicine, Nanjing Medical University, Nanjing, China
| | - Lina Sun
- Department of Pathology and Pathophysiology, College of Life and Basic Medical Sciences, Soochow University, Suzhou, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Junliang Chen
- Department of Pathophysiology, Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Mengzhu Yang
- Department of Oncology, First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yongmei Yin
- Department of Oncology, First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysioloy and Laboratory Center for Experimental Medicine, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
14
|
Fu Q, Yu Z. Phosphoglycerate kinase 1 (PGK1) in cancer: A promising target for diagnosis and therapy. Life Sci 2020; 256:117863. [PMID: 32479953 DOI: 10.1016/j.lfs.2020.117863] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022]
Abstract
Phosphoglycerate kinase 1 (PGK1) is the first critical enzyme to produce ATP in the glycolytic pathway. PGK1 is not only a metabolic enzyme but also a protein kinase, which mediates the tumor growth, migration and invasion through phosphorylation some important substrates. Moreover, PGK1 is associated with poor treatment and prognosis of cancers. This manuscript reviews the structure, functions, post-translational modifications (PTMs) of PGK1 and its relationship with tumors, which demonstrates that PGK1 has indispensable value in the tumor progression. The current review highlights the important role of PGK1 in anticancer treatments.
Collapse
Affiliation(s)
- Qi Fu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China.; College of Bioscience and Technology, Weifang Medical University, Weifang, Shandong Province, PR China
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China..
| |
Collapse
|