1
|
Carvalhas-Almeida C, Serra J, Moita J, Cavadas C, Álvaro AR. Understanding neuron-glia crosstalk and biological clocks in insomnia. Neurosci Biobehav Rev 2023; 147:105100. [PMID: 36804265 DOI: 10.1016/j.neubiorev.2023.105100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
According to the World Health Organization, about one-third of the population experiences insomnia symptoms, and about 10-15% suffer from chronic insomnia, the most common sleep disorder. Sleeping difficulties associated with insomnia are often linked to chronic sleep deprivation, which has a negative health impact partly due to disruption in the internal synchronisation of biological clocks. These are regulated by clock genes and modulate most biological processes. Most studies addressing circadian rhythm regulation have focused on the role of neurons, yet glial cells also impact circadian rhythms and sleep regulation. Chronic insomnia and sleep loss have been associated with glial cell activation, exacerbated neuroinflammation, oxidative stress, altered neuronal metabolism and synaptic plasticity, accelerated age-related processes and decreased lifespan. It is, therefore, essential to highlight the importance of glia-neuron interplay on sleep/circadian regulation and overall healthy brain function. Hence, in this review, we aim to address the main neurobiological mechanisms involved in neuron-glia crosstalk, with an emphasis on microglia and astrocytes, in both healthy sleep, chronic sleep deprivation and chronic insomnia.
Collapse
Affiliation(s)
- Catarina Carvalhas-Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | - Joana Serra
- Sleep Medicine Unit, Coimbra Hospital and University Center (CHUC), Coimbra, Portugal
| | - Joaquim Moita
- Sleep Medicine Unit, Coimbra Hospital and University Center (CHUC), Coimbra, Portugal
| | - Cláudia Cavadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Ana Rita Álvaro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
2
|
Jiang Y, Li JJ, Mu YW, Jiang HY, Wei ZX, Xiao ZY, Zhao JJ, Chen XH. Overexpression of Cpg15 Alleviates the Oxidative Stress in Neuronal Cells Via Regulating Redox Enzymes and Nrf2 Antioxidative Pathway. Neurotox Res 2022; 40:365-372. [PMID: 35038134 DOI: 10.1007/s12640-022-00473-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/12/2021] [Accepted: 01/10/2022] [Indexed: 11/29/2022]
Abstract
Oxidative stress is becoming increasingly implicated in the development of a variety of neurological disorders. However, the underlying mechanism remains elusive. In the present study, we investigated the function and related signal pathway which Cpg15, a neuronal-specific expressed neurotrophic factor, plays in the oxidative stress of neurons using a H2O2-treated N2a cell model. The results showed that the Cpg15 expression was decreased under oxidative stress, and overexpression of Cpg15 increased the activity of antioxidative SOD enzymes and decreased the expression level of prooxidative COX2 enzyme, and the level of oxidative products malondialdehyde (MDA), indicating its function and potential mechanism in alleviating the oxidative stress of cells. The results also indicated that the Nrf2/HO-1 antioxidative pathway was involved in the Cpg15-mediated alleviation of oxidative stress. Also, overexpression of Cpg15 activated the Nrf2 antioxidative pathway in the thalamus of the REM sleep-deprived mice. In conclusion, our results implied that supplemental expression of Cpg15 may alleviate oxidative stress in neuronal cells via regulating the redox enzymes or activating the Nrf2 antioxidant pathway.
Collapse
Affiliation(s)
- Yi Jiang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jun-Jie Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ya-Wei Mu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Han-Yang Jiang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zi-Xuan Wei
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zi-Yao Xiao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jing-Jing Zhao
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, PR China
| | - Xian-Hua Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Luo J, Wang X, Guo Z, Xiao Y, Cao W, Zhang L, Su L, Guo J, Huang R. Endothelial Function and Arterial Stiffness Should Be Measured to Comprehensively Assess Obstructive Sleep Apnea in Clinical Practice. Front Cardiovasc Med 2021; 8:716916. [PMID: 34676249 PMCID: PMC8523814 DOI: 10.3389/fcvm.2021.716916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
Objective: An effective clinical tool to assess endothelial function and arterial stiffness in patients with obstructive sleep apnea (OSA) is lacking. This study evaluated the clinical significance of subclinical markers for OSA management in males without serious complications. Patients/Methods: Males without serious complications were consecutively recruited. Clinical data, biomarker tests, reactive hyperemia index (RHI), and augmentation index at 75 beats/min (AIx75) measured by peripheral arterial tonometry were collected. An apnea hypopnea index (AHI) cutoff of ≥15 events/h divided the patients into two groups. Results: Of the 75 subjects, 42 had an AHI ≥15 events/h. Patients with an AHI ≥15 events/h had higher high-sensitivity C-reactive protein, tumor necrosis factor-alpha (TNF-α), vascular endothelial growth factor, and AIx75 values than the control group but no statistical difference in RHI was observed. After controlling for confounders, TNF-α was negatively correlated with the average oxygen saturation (r = −0.258, P = 0.043). RHI was correlated with the rapid eye movement (REM) stage percentage (r = 0.306, P = 0.016) but not with AHI (P > 0.05). AIx75 was positively correlated with the arousal index (r = 0.289, P = 0.023) but not with AHI (r = 0.248, P = 0.052). Conclusions: In males with OSA without severe complications, TNF-α and AIx75 are independently related to OSA. The role of RHI in OSA management requires further elucidation. These markers combined can comprehensively evaluate OSA patients to provide more evidence for the primary prevention of coronary heart disease and treatment response assessment.
Collapse
Affiliation(s)
- Jinmei Luo
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaona Wang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zijian Guo
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yi Xiao
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wenhao Cao
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Li Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Linfan Su
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Junwei Guo
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Rong Huang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Zhang K, Lian N, Ding R, Guo C, Dong X, Li Y, Wei S, Jiao Q, Yu Y, Shen H. Sleep Deprivation Aggravates Cognitive Impairment by the Alteration of Hippocampal Neuronal Activity and the Density of Dendritic Spine in Isoflurane-Exposed Mice. Front Behav Neurosci 2020; 14:589176. [PMID: 33328920 PMCID: PMC7719754 DOI: 10.3389/fnbeh.2020.589176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Isoflurane contributes to cognitive deficits when used as a general anesthetic, and so does sleep deprivation (SD). Patients usually suffer from insomnia before an operation due to anxiety, fear, and other factors. It remains unclear whether preoperative SD exacerbates cognitive impairment induced by isoflurane. In this study, we observed the effects of pretreated 24-h SD in adult isoflurane-exposed mice on the cognitive behaviors, the Ca2+ signals of dorsal hippocampal CA1 (dCA1) neurons in vivo with fiber photometry, and the density of dendritic spines in hippocampal neurons. Our results showed that in cognitive behavior tasks, short-term memory damages were more severe with SD followed by isoflurane exposure than that with SD or isoflurane exposure separately, and interestingly, severe long-term memory deficits were induced only by SD followed by isoflurane exposure. Only the treatment of SD followed by isoflurane exposure could reversibly decrease the amplitude of Ca2+ signals when mice were freely moving and increase the duration of Ca2+ signals during the long-term memory behavior test. The density of dendritic spines with both SD and isoflurane exposure was lower than that with SD alone. This study suggests that SD should be avoided preoperatively in patients undergoing elective surgery under isoflurane anesthesia.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Anesthesiology, Tianjin, China
| | - Naqi Lian
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Anesthesiology, Tianjin, China
| | - Ran Ding
- Chinese Institute for Brain Research, Beijing (CIBR), Beijing, China
| | - Cunle Guo
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Xi Dong
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Yuanyuan Li
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Sheng Wei
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingyan Jiao
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Yonghao Yu
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Anesthesiology, Tianjin, China
| | - Hui Shen
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China.,Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|