1
|
Paltian JJ, Prado VC, Fonseca CARD, Morais RBD, Cordeiro LM, Silva AFD, Alves D, Antunes Soares FA, Luchese C, Cruz L, Wilhelm EA. 7-chloro-4-(phenylselanyl) quinoline incorporation into polymeric nanocapsules improves its pharmacological action: Physicochemical, toxicological, and behavioral studies. Int J Pharm 2025; 673:125370. [PMID: 39965733 DOI: 10.1016/j.ijpharm.2025.125370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
The encapsulation of active substances offers significant advantages for various pharmaceutical applications. In this study, we explored the potential of nanotechnology to enhance the efficacy of the organic selenium compound 7-chloro-4-(phenylselanyl) quinoline (4-PSQ) by encapsulating it within ethylcellulose polymeric nanocapsules. Initially, we developed and characterized the nanocapsule containing 4-PSQ. To evaluate their safety and pharmacological benefits, we conducted a series of studies, including hemolysis assays (in vitro), neurotoxicity assessments usingCaenorhabditis elegans, and analyses of hepatic and renal toxicity in Swiss mice. The pharmacological activity of 4-PSQ nanocapsules (4-PSQ NCs) was further investigated in nociception and acute inflammation models in male and female Swiss mice. The physicochemical characteristics of 4-PSQ NC comply with nanometric standards and allow for controlled release in vitro. In toxicity evaluations, 4-PSQ NCs exhibited reduced hemolytic and neurotoxic effects compared to the free compound (4-PSQ Free). Furthermore, oxidative damage markers and plasma biomarkers showed no significant differences between the encapsulated and free forms of 4-PSQ. Treatment with 4-PSQ Free or 4-PSQ NC demonstrated antinociceptive and antiedematogenic effects in the glutamate and hot plate tests; however, 4-PSQ NCs showedsignificantly greater efficacy. Furthermore, 4-PSQ NC showed a prolonged effect, reducing mechanical hypersensitivity in the inflammatory pain model induced by Complete Freund's Adjuvant. These findings highlight the potential of 4-PSQ NCs as a novel and promising strategy for developing safer and more effective analgesic and anti-inflammatory therapies.
Collapse
Affiliation(s)
- Jaini Janke Paltian
- Laboratório de Pesquisa em Farmacologia Bioquímica, Programa de Pós-graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas CEP, RS 96010-900, Brasil
| | - Vinicius Costa Prado
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP, RS 97105-900, Brasil
| | - Caren Aline Ramson da Fonseca
- Laboratório de Pesquisa em Farmacologia Bioquímica, Programa de Pós-graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas CEP, RS 96010-900, Brasil
| | - Roberto Barbosa de Morais
- Laboratório de Síntese Orgânica Limpa, Programa de Pós-graduação em Química, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas CEP, RS 96010-900, Brasil
| | - Larissa Marafiga Cordeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria CEP, RS 97105-900, Brasil
| | - Aline Franzen da Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria CEP, RS 97105-900, Brasil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa, Programa de Pós-graduação em Química, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas CEP, RS 96010-900, Brasil
| | - Felix Alexandre Antunes Soares
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria CEP, RS 97105-900, Brasil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica, Programa de Pós-graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas CEP, RS 96010-900, Brasil
| | - Letícia Cruz
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP, RS 97105-900, Brasil.
| | - Ethel Antunes Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica, Programa de Pós-graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas CEP, RS 96010-900, Brasil.
| |
Collapse
|
2
|
Campos GM, Santos PA, Uczay M, Pflüger P, Mendes TL, Fontenla JA, Pereira P. Gamma-Decanolactone Increases Stress Resistance and Improves Toxicity Parameters on the Caenorhabditis elegans Alternative Model. J Appl Toxicol 2025; 45:339-349. [PMID: 39367589 DOI: 10.1002/jat.4705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/04/2024] [Accepted: 09/15/2024] [Indexed: 10/06/2024]
Abstract
Gamma-decanolactone (GD) is a monoterpene compound with anticonvulsant, antiparkinsonian, and neuroprotective effects in preclinical trials. This study aimed to evaluate the toxicity and antioxidant profile of GD in silico and in the Caenorhabditis elegans (C. elegans) experimental model. The C. elegans was used to determine the median lethal concentration (LC50) of GD, as well as its effect on survival, development, reproduction, pharyngeal pumping, and stress resistance assays. The in silico study did not indicate hepatotoxic, cardiotoxic, or mutagenic potential to GD. It reduced the worms' survival, both at the L1 and L4 stages, in a concentration-dependent manner with an LC50 value of 212.16 ± 5.56 μmol/mL. GD did not alter the development, reproduction, and pharyngeal pumping under normal experimental conditions in the three concentrations tested (25, 50, and 100 μmol/mL). In the thermal stress assay, GD did not change the survival pattern of the worms. Hydrogen peroxide (H2O2) reduced the survival of C. elegans and decreased the number of pharyngeal pumping, with these effects being reversed by GD. Also, GD presents an antioxidant activity by modulation the expression of the stress response genes such as sod-3, ctl-1,2,3, and gst-4. In conclusion, GD showed low toxicity in the C. elegans model and antioxidant profile both in the in silico study and in vivo assays.
Collapse
Affiliation(s)
- Glaucia Maria Campos
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Péterson Alves Santos
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- GI-1684 Laboratory of Central Nervous System Pharmacology (Faculty of Pharmacy), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mariana Uczay
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- GI-1684 Laboratory of Central Nervous System Pharmacology (Faculty of Pharmacy), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Pricila Pflüger
- GI-1684 Laboratory of Central Nervous System Pharmacology (Faculty of Pharmacy), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Thaís Lemos Mendes
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jose Angel Fontenla
- GI-1684 Laboratory of Central Nervous System Pharmacology (Faculty of Pharmacy), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Patrícia Pereira
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- GI-1684 Laboratory of Central Nervous System Pharmacology (Faculty of Pharmacy), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
3
|
da Fonseca CAR, Prado VC, Paltian JJ, Kazmierczak JC, Schumacher RF, Sari MHM, Cordeiro LM, da Silva AF, Soares FAA, Oliboni RDS, Luchese C, Cruz L, Wilhelm EA. 4-(Phenylselanyl)-2H-chromen-2-one-Loaded Nanocapsule Suspension-A Promising Breakthrough in Pain Management: Comprehensive Molecular Docking, Formulation Design, and Toxicological and Pharmacological Assessments in Mice. Pharmaceutics 2024; 16:269. [PMID: 38399323 PMCID: PMC10892109 DOI: 10.3390/pharmaceutics16020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Therapies for the treatment of pain and inflammation continue to pose a global challenge, emphasizing the significant impact of pain on patients' quality of life. Therefore, this study aimed to investigate the effects of 4-(Phenylselanyl)-2H-chromen-2-one (4-PSCO) on pain-associated proteins through computational molecular docking tests. A new pharmaceutical formulation based on polymeric nanocapsules was developed and characterized. The potential toxicity of 4-PSCO was assessed using Caenorhabditis elegans and Swiss mice, and its pharmacological actions through acute nociception and inflammation tests were also assessed. Our results demonstrated that 4-PSCO, in its free form, exhibited high affinity for the selected receptors, including p38 MAP kinase, peptidyl arginine deiminase type 4, phosphoinositide 3-kinase, Janus kinase 2, toll-like receptor 4, and nuclear factor-kappa β. Both free and nanoencapsulated 4-PSCO showed no toxicity in nematodes and mice. Parameters related to oxidative stress and plasma markers showed no significant change. Both treatments demonstrated antinociceptive and anti-edematogenic effects in the glutamate and hot plate tests. The nanoencapsulated form exhibited a more prolonged effect, reducing mechanical hypersensitivity in an inflammatory pain model. These findings underscore the promising potential of 4-PSCO as an alternative for the development of more effective and safer drugs for the treatment of pain and inflammation.
Collapse
Affiliation(s)
- Caren Aline Ramson da Fonseca
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| | - Vinicius Costa Prado
- Graduate Program in Pharmaceutical Sciences, Pharmaceutical Technology Laboratory, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil;
| | - Jaini Janke Paltian
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| | - Jean Carlo Kazmierczak
- Graduate Program in Chemistry, Chemistry Department, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (J.C.K.); (R.F.S.)
| | - Ricardo Frederico Schumacher
- Graduate Program in Chemistry, Chemistry Department, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (J.C.K.); (R.F.S.)
| | | | - Larissa Marafiga Cordeiro
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (L.M.C.); (A.F.d.S.); (F.A.A.S.)
| | - Aline Franzen da Silva
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (L.M.C.); (A.F.d.S.); (F.A.A.S.)
| | - Felix Alexandre Antunes Soares
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (L.M.C.); (A.F.d.S.); (F.A.A.S.)
| | - Robson da Silva Oliboni
- Center for Chemical, Pharmaceutical, and Food Sciences, CCQFA, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil;
| | - Cristiane Luchese
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| | - Letícia Cruz
- Graduate Program in Pharmaceutical Sciences, Pharmaceutical Technology Laboratory, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil;
| | - Ethel Antunes Wilhelm
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| |
Collapse
|
4
|
Martínez-Abarca Millán A, Soler Beatty J, Valencia Expósito A, Martín-Bermudo MD. Drosophila as Model System to Study Ras-Mediated Oncogenesis: The Case of the Tensin Family of Proteins. Genes (Basel) 2023; 14:1502. [PMID: 37510408 PMCID: PMC10379045 DOI: 10.3390/genes14071502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Oncogenic mutations in the small GTPase Ras contribute to ~30% of human cancers. However, tissue growth induced by oncogenic Ras is restrained by the induction of cellular senescence, and additional mutations are required to induce tumor progression. Therefore, identifying cooperating cancer genes is of paramount importance. Recently, the tensin family of focal adhesion proteins, TNS1-4, have emerged as regulators of carcinogenesis, yet their role in cancer appears somewhat controversial. Around 90% of human cancers are of epithelial origin. We have used the Drosophila wing imaginal disc epithelium as a model system to gain insight into the roles of two orthologs of human TNS2 and 4, blistery (by) and PVRAP, in epithelial cancer progression. We have generated null mutations in PVRAP and found that, as is the case for by and mammalian tensins, PVRAP mutants are viable. We have also found that elimination of either PVRAP or by potentiates RasV12-mediated wing disc hyperplasia. Furthermore, our results have unraveled a mechanism by which tensins may limit Ras oncogenic capacity, the regulation of cell shape and growth. These results demonstrate that Drosophila tensins behave as suppressors of Ras-driven tissue hyperplasia, suggesting that the roles of tensins as modulators of cancer progression might be evolutionarily conserved.
Collapse
Affiliation(s)
- Ana Martínez-Abarca Millán
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Ctra Utrera Km1, 41013 Sevilla, Spain
| | - Jennifer Soler Beatty
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Ctra Utrera Km1, 41013 Sevilla, Spain
| | - Andrea Valencia Expósito
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Ctra Utrera Km1, 41013 Sevilla, Spain
| | - María D Martín-Bermudo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Ctra Utrera Km1, 41013 Sevilla, Spain
| |
Collapse
|
5
|
Molecular Mechanism of Curcumin Derivative on YAP Pathway against Ovarian Cancer. J Clin Med 2022; 11:jcm11237220. [PMID: 36498794 PMCID: PMC9740724 DOI: 10.3390/jcm11237220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
The purpose of this study is to study the effect of curcumin derivative WZ10 on the proliferation, invasion and apoptosis of ovarian cancer OVCAR3 cells, and to explore its mechanism. MTT assay was used to detect the effect of WZ10 on the proliferation of ovarian cancer OVCAR3 cells; Annexin V/PI double staining flow cytometry was used to detect the effect of WZ10 on cell apoptosis; Transwell method was used to detect the effect of WZ10 on cell invasiveness; Western blot was used to investigate the effect of WZ10 Mechanisms affecting OVCAR3 activity in ovarian cancer in vitro. Our results show that WZ10 treatment could significantly inhibit the proliferation and invasion of OVCAR3 cells, induce apoptosis of OVCAR3 cells in a dose-dependent manner. After knockdown of Hippo expression with sh-RNA, further combined treatment with WZ10 had no significant image on ovarian cancer OVCAR3 cells. In conclusion: WZ10 can significantly inhibit the proliferation of OVCAR3 cells, reduce cell invasion and proliferation by downregulating the activation of Hippo-YAP pathway, and induce cell apoptosis.
Collapse
|
6
|
Glycyrrhizic Acid and Compound Probiotics Supplementation Alters the Intestinal Transcriptome and Microbiome of Weaned Piglets Exposed to Deoxynivalenol. Toxins (Basel) 2022; 14:toxins14120856. [PMID: 36548753 PMCID: PMC9783239 DOI: 10.3390/toxins14120856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Deoxynivalenol (DON) is a widespread mycotoxin that affects the intestinal health of animals and humans. In the present study, we performed RNA-sequencing and 16S rRNA sequencing in piglets after DON and glycyrrhizic acid and compound probiotics (GAP) supplementation to determine the changes in intestinal transcriptome and microbiota. Transcriptome results indicated that DON exposure altered intestinal gene expression involved in nutrient transport and metabolism. Genes related to lipid metabolism, such as PLIN1, PLIN4, ADIPOQ, and FABP4 in the intestine, were significantly decreased by DON exposure, while their expressions were significantly increased after GAP supplementation. KEGG enrichment analysis showed that GAP supplementation promoted intestinal digestion and absorption of proteins, fats, vitamins, and other nutrients. Results of gut microbiota composition showed that GAP supplementation significantly improved the diversity of gut microbiota. DON exposure significantly increased Proteobacteria, Actinobacteria, and Bacillus abundances and decreased Firmicutes, Lactobacillus, and Streptococcus abundances; however, dietary supplementation with GAP observably recovered their abundances to normal. In addition, predictive functions by PICRUSt analysis showed that DON exposure decreased lipid metabolism, whereas GAP supplementation increased immune system. This result demonstrated that dietary exposure to DON altered the intestinal gene expressions related to nutrient metabolism and induced disturbances of intestinal microbiota, while supplementing GAP to DON-contaminated diets could improve intestinal health for piglets.
Collapse
|
7
|
JM-20 affects GABA neurotransmission in Caenorhabditis elegans. Neurotoxicology 2022; 93:37-44. [PMID: 36029931 DOI: 10.1016/j.neuro.2022.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/22/2022]
Abstract
Along with the discovery of new candidate molecules for pharmaceuticals, several studies have emerged showing different mechanisms of action and toxicological aspects. 3-ethoxycarbonyl-2-methyl-4- (2-nitrophenyl)4,11-dihydro-1H-pyrido [2,3-b] [1,5] benzodiazepine (JM-20) is a hybrid molecule. It is derived from 1,5-benzodiazepines and structurally differentiated by the addition of 1,4-dihydropyridine bonded to the benzodiazepine ring. This gives this molecule potential neuroprotective, antioxidant, and anxiolytic activity. As this is a promising multi-target molecule, further studies are necessary to improve the knowledge about its mechanism of action. In our study, we used Caenorhabditis elegans (C. elegans) to investigate the effects of chronic treatment with JM-20. Nematodes from the wild-type strain (N2) were treated chronically at different concentrations of JM-20. Our results show that JM-20 does not cause mortality, but higher concentrations can delay the development of worms after 48h exposure. We assessed basic behaviors in the worm, and our data demonstrate decreased defecation cycle. Our results suggest that JM-20 acts on the C. elegans GABAergic system because GABA neurotransmission is associated with the worm intestine. We also observed increased locomotor activity and decreased egg-laying after JM-20 treatment. When both behaviors were evaluated in mutants with have reduced levels of GABA (unc-25), this effect is no observed, suggesting the GABAergic modulation. Still, the JM-20 exert similar effect of Diazepam in basic behaviors observed. To reinforce neuromodulatory action, computational analysis was performed, and results showed a JM-20 binding on allosteric sites of nematodes GABA receptors. Overall, this work provided a better understanding of the effects of JM-20 in C. elegans as well as showed the effects of this new molecule on the GABAergic system in this animal model.
Collapse
|
8
|
Liao YC, Lo SH. Tensins - emerging insights into their domain functions, biological roles and disease relevance. J Cell Sci 2021; 134:jcs254029. [PMID: 33597154 PMCID: PMC10660079 DOI: 10.1242/jcs.254029] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tensins are a family of focal adhesion proteins consisting of four members in mammals (TNS1, TNS2, TNS3 and TNS4). Their multiple domains and activities contribute to the molecular linkage between the extracellular matrix and cytoskeletal networks, as well as mediating signal transduction pathways, leading to a variety of physiological processes, including cell proliferation, attachment, migration and mechanical sensing in a cell. Tensins are required for maintaining normal tissue structures and functions, especially in the kidney and heart, as well as in muscle regeneration, in animals. This Review discusses our current understanding of the domain functions and biological roles of tensins in cells and mice, as well as highlighting their relevance to human diseases.
Collapse
Affiliation(s)
- Yi-Chun Liao
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Su Hao Lo
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Sacramento, CA 95817, USA
| |
Collapse
|