1
|
Grzymala B, Þorsteinsson H, Halldórsdóttir DÞ, Sveinsdóttir HS, Sævarsdóttir BR, Norton WHJ, Parker MO, Rolfsson Ó, Karlsson KÆ. Metabolomic and lipidomic profiling reveals convergent pathways in attention deficit hyperactivity disorder therapeutics: Insights from established and emerging treatments. J Pharmacol Exp Ther 2025; 392:103403. [PMID: 40081232 DOI: 10.1016/j.jpet.2025.103403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/09/2025] [Indexed: 03/15/2025] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with unclear pathological mechanisms. ADHD is treated with both stimulant and nonstimulant medications, but their therapeutic mechanisms and impact on brain metabolites are not fully understood. This study employed an untargeted metabolomics approach with liquid chromatography mass spectrometry to investigate the pathogenesis of ADHD, as well as the effects of established and novel therapeutics. We characterized the metabolomic signatures of the adgrl3.1 mutant zebrafish ADHD model and examined the impact of methylphenidate, guanfacine, atomoxetine, and 5 novel putative therapeutics identified in a prior screen, including amlodipine. Our analysis revealed that the drugs commonly affect pathways related to amino acid and lipid metabolism, specifically involving glycine, serine, threonine, phenylalanine, lysophosphatidylcholine, and sphingomyelin. This convergence on similar metabolic targets was unexpected and suggests a broader, systemic effect of ADHD therapeutics, challenging the traditional view of distinct drug mechanisms. Amlodipine exhibited metabolic effects consistent with established treatments, indicating its potential as a viable alternative or adjunct therapy. These findings provide new insights into the metabolic underpinnings of ADHD and highlight potential targets for developing improved therapeutic strategies. SIGNIFICANCE STATEMENT: This study explores the metabolic pathways affected by attention deficit hyperactivity disorder treatments using a zebrafish adgrl3.1 mutant model. Untargeted metabolomics revealed that both established and novel attention deficit hyperactivity disorder medications influence common amino acid and lipid metabolism pathways, suggesting systemic effects. Notably, amlodipine showed similar impacts as current drugs, offering promise as an alternative therapy.
Collapse
Affiliation(s)
- Bartosz Grzymala
- 3Z, Reykjavik, Iceland; Department of Engineering, Reykjavik University, Reykjavik, Iceland
| | | | | | | | | | - William H J Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Matthew O Parker
- Surrey Sleep Research Centre, School of Biosciences, University of Surrey, Guildford, United Kingdom
| | - Óttar Rolfsson
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland; Medical Department, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Karl Ægir Karlsson
- 3Z, Reykjavik, Iceland; Department of Engineering, Reykjavik University, Reykjavik, Iceland; Medical Department, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
2
|
Adıgüzel Akman Ö, Sarıgedik E. Cognitive disengagement syndrome: The same as or different from attention-deficit hyperactivity disorder? An examination based on biochemical parameters. J Psychiatr Res 2025; 182:270-276. [PMID: 39826377 DOI: 10.1016/j.jpsychires.2025.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/13/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
OBJECTIVES The aim of this study was to determine whether there are differences in the biochemical blood parameters between individuals with Cognitive Disengagement Syndrome (CDS) and Attention Deficit Hyperactivity Disorder (ADHD), and to investigate the relationship between vitamin levels and these disorders, as well as their impact on symptom severity. METHODS The study included 35 patients with ADHD, 35 patients with both ADHD and CDS, and 35 healthy control subjects who presented to the child and adolescent psychiatry outpatient clinic between January 2022 and 2023, matched for age and gender. Children aged 7-15 were included in the study. Participants were administered a sociodemographic data form, DSM-IV Based Screening and Assesment Scale for Disruptive Behavior Disorders- Parent form (DBSAS-DBD) and the Barkley Child Attention Scale (BCAS). Hemogram parameters, iron, ferritin, Thyroid Stimulating Hormone (TSH), T3, T4, and vitamin levels (B12, folic acid, vitamin D) were analyzed for all participants. RESULTS Of the participants, 78 (74.3%) were male, and 27 (25.7%) were female. In the analysis, Vitamin B12 and D levels were found to be significantly lower in the ADHD + CDS group compared to both the ADHD group and the control group (p = 0.04; p = 0.03; p = 0.009 p = 0.004 respectively). Hemoglobin levels did not significantly differ between the ADHD + CDS group and the ADHD group, but were significantly higher in the ADHD + CDS group compared to the control group (p = 0.004). Ferritin levels were significantly lower in both the ADHD + CDS group and the ADHD group (p < 0.001; p < 0.001, respectively). CONCLUSIONS The significant decrease in vitamin B12 and vitamin D in the CDS + ADHD group may be related to daytime sleepiness and slow cognitive processes in the CDS clinic. Screening for nutritional deficiencies in individuals with CDS may be beneficial for clinical management, and identifying differences in blood parameters of CDS from ADHD will contribute to a better understanding of this clinical condition. This is an exploratory study with a rather small sample size, in which many outcomes were examined. Further studies with larger and more diverse samples will provide a more comprehensive understanding of the biochemical foundations of these two conditions.
Collapse
Affiliation(s)
- Öznur Adıgüzel Akman
- Department of Child and Adolescent Psychiatry, Zonguldak Bulent Ecevit University Faculty of Medicine, Zonguldak, Turkey.
| | - Enes Sarıgedik
- Department of Child and Adolescent Psychiatry, Sakarya University Faculty of Medicine, Sakarya, Turkey
| |
Collapse
|
3
|
Zhang X, Fu Z, Wang H, Sheng L. Metabolic pathways, genomic alterations, and post-translational modifications in pulmonary hypertension and cancer as therapeutic targets and biomarkers. Front Pharmacol 2024; 15:1490892. [PMID: 39635438 PMCID: PMC11614602 DOI: 10.3389/fphar.2024.1490892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Background Pulmonary hypertension (PH) can lead to right ventricular hypertrophy, significantly increasing mortality rates. This study aims to clarify PH-specific metabolites and their impact on genomic and post-translational modifications (PTMs) in cancer, evaluating DHA and EPA's therapeutic potential to mitigate oxidative stress and inflammation. Methods Data from 289,365 individuals were analyzed using Mendelian randomization to examine 1,400 metabolites' causal roles in PH. Anti-inflammatory and antioxidative effects of DHA and EPA were tested in RAW 264.7 macrophages and cancer cell lines (A549, HCT116, HepG2, LNCaP). Genomic features like CNVs, DNA methylation, tumor mutation burden (TMB), and PTMs were analyzed. DHA and EPA's effects on ROS production and cancer cell proliferation were assessed. Results We identified 57 metabolites associated with PH risk and examined key tumor-related pathways through promoter methylation analysis. DHA and EPA significantly reduced ROS levels and inflammatory markers in macrophages, inhibited the proliferation of various cancer cell lines, and decreased nuclear translocation of SUMOylated proteins during oxidative stress and inflammatory responses. These findings suggest a potential anticancer role through the modulation of stress-related nuclear signaling, as well as a regulatory function on cellular PTMs. Conclusion This study elucidates metabolic and PTM changes in PH and cancer, indicating DHA and EPA's role in reducing oxidative stress and inflammation. These findings support targeting these pathways for early biomarkers and therapies, potentially improving disease management and patient outcomes.
Collapse
Affiliation(s)
- Xiujin Zhang
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | | | | | - Li Sheng
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Guo D, Sheng W, Cai Y, Shu J, Cai C. Genetic Association of Lipids and Lipid-Lowering Drug Target Genes With Attention Deficit Hyperactivity Disorder. J Atten Disord 2024; 28:1425-1436. [PMID: 38166458 DOI: 10.1177/10870547231222219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
BACKGROUND Lipid metabolism plays an essential role in nervous system development. Cholesterol deficiency leads to a variety of neurodevelopmental disorders, such as autism spectrum disorder and fragile X syndrome. There have been a lot of efforts to search for biological markers associated with and causal to ADHD, among which lipid is one possible etiological factor that is quite widely studied. We aimed to evaluate the causal relationship between lipids traits, lipid-lowering drugs, and attention deficit hyperactivity disorder (ADHD) outcomes using Mendelian randomization (MR) studies. METHODS We used summary data from genome-wide association studies to explore the causal relationships between circulating lipid-related traits and ADHD. Then, quantitative trait loci for the expression of lipid-lowering drug target genes and genetic variants associated with lipid traits were extracted. Summary-data-based MR and inverse-variance-weighted MR (IVW-MR) were used to investigate the correlation between the expression of these drug-target genes and ADHD. RESULTS After rigorous screening, 939 instrumental variables were finally included for univariable mendelian randomization analysis. However, there is no correlation between lipid profile and ADHD risk. Drug target analysis by IVW-MR method observed that APOB-mediated low-density lipoprotein cholesterol was associated with lower ADHD risk (odds ratio [OR] = 0.90, 95% confidence interval [CI] [0.84, 0.97]; p = .007), whereas LPL-mediated triglycerides levels were associated with a higher risk of ADHD (OR = 1.13, 95% CI [1.06, 1.21]; p < .001). CONCLUSION Our results suggest that APOB gene and LPL gene may be candidate drug target genes for the treatment of ADHD.
Collapse
Affiliation(s)
- Detong Guo
- Tianjin Children's Hospital (Tianjin University Children's Hospital), China
- Tianjin Medical University, China
| | - Wenchao Sheng
- Tianjin Children's Hospital (Tianjin University Children's Hospital), China
- Tianjin Medical University, China
| | | | - Jianbo Shu
- Tianjin Children's Hospital (Tianjin University Children's Hospital), China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, China
| | - Chunquan Cai
- Tianjin Children's Hospital (Tianjin University Children's Hospital), China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, China
| |
Collapse
|
5
|
Yang Y, Yang B, Zhang L, Peng G, Fang D. Dynamic Functional Connectivity Reveals Abnormal Variability in the Amygdala Subregions of Children With Attention-Deficit/Hyperactivity Disorder. Front Neurosci 2021; 15:648143. [PMID: 34658751 PMCID: PMC8514188 DOI: 10.3389/fnins.2021.648143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
Objective: This study investigates whether the dynamic functional connectivity (dFC) of the amygdala subregions is altered in children with attention-deficit/hyperactivity disorder (ADHD). Methods: The dFC of the amygdala subregions was systematically calculated using a sliding time window method, for 75 children with ADHD and 20 healthy control (HC) children. Results: Compared with the HC group, the right superficial amygdala exhibited significantly higher dFC with the right prefrontal cortex, the left precuneus, and the left post-central gyrus for children in the ADHD group. The dFC of the amygdala subregions showed a negative association with the cognitive functions of children in the ADHD group. Conclusion: Functional connectivity of the amygdala subregions is more unstable among children with ADHD. In demonstrating an association between the stability of functional connectivity of the amygdala and cognitive functions, this study may contribute by providing a new direction for investigating the internal mechanism of ADHD.
Collapse
Affiliation(s)
- Yue Yang
- Children's Healthcare & Mental Health Center, Shenzhen Children's Hospital, Shenzhen, China
| | - Binrang Yang
- Children's Healthcare & Mental Health Center, Shenzhen Children's Hospital, Shenzhen, China
| | - Linlin Zhang
- Children's Healthcare & Mental Health Center, Shenzhen Children's Hospital, Shenzhen, China
| | - Gang Peng
- Children's Healthcare & Mental Health Center, Shenzhen Children's Hospital, Shenzhen, China
| | - Diangang Fang
- Children's Healthcare & Mental Health Center, Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
6
|
Wang LJ, Chou WJ, Tsai CS, Lee MJ, Lee SY, Hsu CW, Hsueh PC, Wu CC. Novel plasma metabolite markers of attention-deficit/hyperactivity disorder identified using high-performance chemical isotope labelling-based liquid chromatography-mass spectrometry. World J Biol Psychiatry 2021; 22:139-148. [PMID: 32351159 DOI: 10.1080/15622975.2020.1762930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
OBJECTIVES Metabolites are the intermediate and final products of biological processes and ultimately reflect the responses of these processes to genetic regulation and environmental perturbations, including those involved in attention deficit/hyperactivity disorder (ADHD). METHODS We identified a quantitative profile of plasma metabolites in 58 ADHD patients (mean age 9.0 years, 77.6% males) and 38 healthy control subjects (mean age 10.2 years, 55.3% males) using the high-performance chemical isotope labelling (CIL)-based liquid chromatography-mass spectrometry (LC-MS). Using a volcano plot and orthogonal projections to latent structure-discriminant analysis (OPLS-DA), we determined nine metabolites with differentially expressed levels in ADHD plasma samples. RESULTS Compared to the control group, the plasma levels of guanosine, O-phosphoethanolamine, phenyl-leucine, hypoxanthine, 4-aminohippuric acid, 5-hydroxylysine, and L-cystine appeared increased in the ADHD patients, whilegentisic acid and tryptophyl-phenylalanine were down-regulated in the patients with ADHD. We found that the plasma levels of all nine metabolites were able to discriminate the ADHD group from the control group. Levels of O-phosphoethanolamine, 4-aminohippuric acid, 5-hydroxylysine, L-cystine, tryptophyl-phenylalanine, and gentisic acid were significantly correlated with clinical ADHD symptoms. CONCLUSIONS This study is the first to use the CIL-based LC-MS to profile ADHD plasma metabolites, and we identified nine novel metabolite biomarkers of ADHD.
Collapse
Affiliation(s)
- Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Jiun Chou
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Shu Tsai
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Min-Jing Lee
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Psychiatry, School of Medicine, and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Wei Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Pei-Chun Hsueh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Ching Wu
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan.,Department of Otolaryngology-Head & Neck Surgery, Linkuo Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
7
|
GC-TOF-MS-Based Metabolomic Analysis and Evaluation of the Effects of HX106, a Nutraceutical, on ADHD-Like Symptoms in Prenatal Alcohol Exposed Mice. Nutrients 2020; 12:nu12103027. [PMID: 33023237 PMCID: PMC7600704 DOI: 10.3390/nu12103027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that occurs in children characterized by inattention and hyperactivity. Prenatal alcohol exposure (PAE) can disrupt fetal neuronal development and cause an ADHD-like hyperactive behavior in the offspring. In this study, we hypothesized that metabolic disturbance would involve in ADHD neuropathology and aimed to investigate the changes in metabolite profile in PAE-induced ADHD-like model and the effects of HX106, a nutraceutical, on ADHD-like pathophysiology and metabolite changes. To this end, we administered HX106 to the mouse offspring affected by PAE (OPAE) and assessed the hyperactivity using the open field test. We observed that HX106-treated OPAE showed less hyperactive behavior than vehicle-treated OPAE. The effects of HX106 were found to be related to the regulation of dopamine transporter and D2 dopamine receptor expression. Furthermore, using gas chromatography time-of-flight mass spectrometry-based metabolomics, we explored the metabolite changes among the experimental groups. The metabolite profile, particularly related with the amino acids, linoleic acid and amino sugar pathways, was altered by PAE and reversed by HX106 treatment partially similar to that observed in the control group. Overall, this study suggest that metabolite alteration would be involved in ADHD pathology and that HX106 can be an efficient supplement to overcome ADHD by regulating dopamine signaling-related protein expression and metabolite changes.
Collapse
|