1
|
He M, Zhou X, Wang X. Glycosylation: mechanisms, biological functions and clinical implications. Signal Transduct Target Ther 2024; 9:194. [PMID: 39098853 PMCID: PMC11298558 DOI: 10.1038/s41392-024-01886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Protein post-translational modification (PTM) is a covalent process that occurs in proteins during or after translation through the addition or removal of one or more functional groups, and has a profound effect on protein function. Glycosylation is one of the most common PTMs, in which polysaccharides are transferred to specific amino acid residues in proteins by glycosyltransferases. A growing body of evidence suggests that glycosylation is essential for the unfolding of various functional activities in organisms, such as playing a key role in the regulation of protein function, cell adhesion and immune escape. Aberrant glycosylation is also closely associated with the development of various diseases. Abnormal glycosylation patterns are closely linked to the emergence of various health conditions, including cancer, inflammation, autoimmune disorders, and several other diseases. However, the underlying composition and structure of the glycosylated residues have not been determined. It is imperative to fully understand the internal structure and differential expression of glycosylation, and to incorporate advanced detection technologies to keep the knowledge advancing. Investigations on the clinical applications of glycosylation focused on sensitive and promising biomarkers, development of more effective small molecule targeted drugs and emerging vaccines. These studies provide a new area for novel therapeutic strategies based on glycosylation.
Collapse
Affiliation(s)
- Mengyuan He
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
2
|
Gao J, Han S, Deng B, Deng Y, Gao X. Research progress of additional pathogenic mutations in chronic neutrophilic leukemia. Ann Hematol 2024; 103:2591-2600. [PMID: 37993585 DOI: 10.1007/s00277-023-05550-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Chronic neutrophilic leukemia (CNL) is a rare type of myeloproliferative neoplasm (MPN). Due to its nonspecific clinical symptoms and lack of specific molecular markers, it was previously difficult to distinguish it from other diseases with increased neutrophils. However, the discovery of the CSF3R mutation in CNL 10 years ago and the update of the diagnostic criteria by the World Health Organization (WHO) in 2016 brought CNL into a new era of molecular diagnosis. Next-generation sequencing (NGS) technology has led to the identification of numerous mutant genes in CNL. While CSF3R is commonly recognized as the driver mutation of CNL, other mutations have also been detected in CNL using NGS, including mutations in other signaling pathway genes (CBL, JAK2, NARS, PTPN11) and chromatin modification genes (ASXL1, SETBP1, EZH2), DNA methylation genes (DNMT3A, TET2), myeloid-related transcription factor genes (RUNX1, GATA2), and splicing and RNA metabolism genes (SRSF2, U2AF1). The coexistence of these mutated genes and CSF3R mutations, as well as the different evolutionary sequences of clones, deepens the complexity of CNL molecular biology. The purpose of this review is to summarize the genetic research findings of CNL in the last decade, focusing on the common mutated genes in CNL and their clinical significance, as well as the clonal evolution pattern and sequence of mutation acquisition in CNL, to provide a basis for the appropriate management of CNL patients.
Collapse
Affiliation(s)
- Jiapei Gao
- Department of Hematology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Shuai Han
- Yangzhou University Medical College, Yangzhou, Jiangsu Province, China
| | - Bin Deng
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yifan Deng
- Yangzhou University Medical College, Yangzhou, Jiangsu Province, China
| | - Xiaohui Gao
- Department of Hematology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, China.
| |
Collapse
|
3
|
Liao Y, Chuang Y, Lin H, Lin N, Hsu T, Hsieh S, Chen S, Hung J, Yang H, Liang J, Huang M, Huang J. GALNT2 promotes invasiveness of colorectal cancer cells partly through AXL. Mol Oncol 2022; 17:119-133. [PMID: 36409270 PMCID: PMC9812829 DOI: 10.1002/1878-0261.13347] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/29/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
GalNAc-type O-glycosylation and its initiating GalNAc transferases (GALNTs) play crucial roles in a wide range of cellular behaviors. Among 20 GALNT members, GALNT2 is consistently associated with poor survival of patients with colorectal cancer in public databases. However, its clinicopathological significance in colorectal cancer remains unclear. In this study, immunohistochemistry showed that GALNT2 was overexpressed in colorectal tumors compared with the adjacent nontumor tissues. GALNT2 overexpression was associated with poor survival of colorectal cancer patients. Forced expression of GALNT2 promoted migration and invasion as well as peritoneal metastasis of colorectal cancer cells. In contrast, GALNT2 knockdown with siRNAs or knockout with CRISPR/Cas9 system suppressed these malignant properties. Interestingly, we found that GALNT2 modified O-glycans on AXL and determined AXL levels via the proteasome-dependent pathway. In addition, the GALNT2-promoted invasiveness was significantly reversed by AXL siRNAs. These findings suggest that GALNT2 promotes colorectal cancer invasion at least partly through AXL.
Collapse
Affiliation(s)
- Ying‐Yu Liao
- Graduate Institute of Anatomy and Cell Biology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Ya‐Ting Chuang
- Department of Medical ResearchNational Taiwan University HospitalTaipeiTaiwan
| | - Hsuan‐Yu Lin
- Graduate Institute of Anatomy and Cell Biology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Neng‐Yu Lin
- Graduate Institute of Anatomy and Cell Biology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Tzu‐Wen Hsu
- Graduate Institute of Anatomy and Cell Biology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Szu‐Chia Hsieh
- Graduate Institute of Anatomy and Cell Biology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Syue‐Ting Chen
- Department of Anatomy, College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Ji‐Shiang Hung
- Department of SurgeryNational Taiwan University HospitalTaipeiTaiwan
| | | | - Jin‐Tung Liang
- Department of SurgeryNational Taiwan University HospitalTaipeiTaiwan
| | - Min‐Chuan Huang
- Graduate Institute of Anatomy and Cell Biology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - John Huang
- Department of SurgeryNational Taiwan University HospitalTaipeiTaiwan
| |
Collapse
|
4
|
Wang Y, Shao Y, Zhang H, Wang J, Zhang P, Zhang W, Chen H. Comprehensive analysis of key genes and pathways for biological and clinical implications in thyroid-associated ophthalmopathy. BMC Genomics 2022; 23:630. [PMID: 36056316 PMCID: PMC9440526 DOI: 10.1186/s12864-022-08854-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Background Thyroid-associated ophthalmopathy (TAO) is a common and organ-specific autoimmune disease. Early diagnosis and novel treatments are essential to improve the prognosis of TAO patients. Therefore, the current work was performed to identify the key genes and pathways for the biological and clinical implications of TAO through comprehensive bioinformatics analysis and a series of clinical validations. Methods GSE105149 and GSE185952 were obtained from the Gene Expression Omnibus (GEO) database for analysis. The data were normalized to identify the common differentially expressed genes (DEGs) between the two datasets, and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to assess key pathways in TAO. Protein–protein interaction (PPI) networks and hub genes among the common DEGs were identified. Furthermore, we collected the general information and blood samples from 50 TAO patients and 20 healthy controls (HCs), and the expression levels of the proteins encoded by hub genes in serum were detected by enzyme-linked immunosorbent assay (ELISA). Then we further assessed the relationship between the ELISA data and the TAO development. Results Several common pathways, including neuroactive ligand-receptor interaction, the IL-17 signaling pathway, and the TNF signaling pathway, were identified in both datasets. In parallel, 52 common DEGs were identified. The KEGG analysis showed that these common DEGs are mainly enriched in long-term depression, the VEGF signaling pathway, the IL-17 signaling pathway, the TNF signaling pathway, and cytokine-cytokine receptor interactions. The key hub genes PRKCG, OSM, DPP4, LRRTM1, CXCL6, and CSF3R were screened out through the PPI network. As confirmation, the ELISA results indicated that protein expression levels of PRKCG, OSM, CSF3R, and DPP4 were significantly upregulated in TAO patients compared with HCs. In addition, PRKCG and DPP4 were verified to show value in diagnosing TAO, and CSF3R was found to be a valuable diagnostic marker in distinguishing active TAO from inactive TAO. Conclusions Inflammation- and neuromodulation-related pathways might be closely associated with TAO. Based on the clinical verification, OSM, CSF3R, CXCL6, DPP4, and PRKCG may serve as inflammation- or neuromodulation-related biomarkers for TAO, providing novel insights for the diagnosis and treatment of TAO. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08854-5.
Collapse
Affiliation(s)
- Yueyue Wang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanfei Shao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haitao Zhang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Wang
- Department of Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Peng Zhang
- Department of Ophthalmology, The Friendship Hospital of Ili Kazakh Autonomous Prefecture Ili & Jiangsu Joint Institute of Health, Ili, China
| | - Weizhong Zhang
- Department of Ophthalmology, The Friendship Hospital of Ili Kazakh Autonomous Prefecture Ili & Jiangsu Joint Institute of Health, Ili, China. .,Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Huanhuan Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Park SD, Saunders AS, Reidy MA, Bender DE, Clifton S, Morris KT. A review of granulocyte colony-stimulating factor receptor signaling and regulation with implications for cancer. Front Oncol 2022; 12:932608. [PMID: 36033452 PMCID: PMC9402976 DOI: 10.3389/fonc.2022.932608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/15/2022] [Indexed: 12/29/2022] Open
Abstract
Granulocyte colony-stimulating factor receptor (GCSFR) is a critical regulator of granulopoiesis. Studies have shown significant upregulation of GCSFR in a variety of cancers and cell types and have recognized GCSFR as a cytokine receptor capable of influencing both myeloid and non-myeloid immune cells, supporting pro-tumoral actions. This systematic review aims to summarize the available literature examining the mechanisms that control GCSFR signaling, regulation, and surface expression with emphasis on how these mechanisms may be dysregulated in cancer. Experiments with different cancer cell lines from breast cancer, bladder cancer, glioma, and neuroblastoma are used to review the biological function and underlying mechanisms of increased GCSFR expression with emphasis on actions related to tumor proliferation, migration, and metastasis, primarily acting through the JAK/STAT pathway. Evidence is also presented that demonstrates a differential physiological response to aberrant GCSFR signal transduction in different organs. The lifecycle of the receptor is also reviewed to support future work defining how this signaling axis becomes dysregulated in malignancies.
Collapse
Affiliation(s)
- Sungjin David Park
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Apryl S. Saunders
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Megan A. Reidy
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Dawn E. Bender
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Shari Clifton
- Department of Information Management, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Katherine T. Morris
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- *Correspondence: Katherine T. Morris,
| |
Collapse
|
6
|
Wang B, Wen L, Wang Z, Chen S, Qiu H. Differential Implications of CSF3R Mutations in t(8;21) and CEBPA Double Mutated Acute Myeloid Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:393-404. [PMID: 34975010 DOI: 10.1016/j.clml.2021.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Few data are available exploring mutations of the colony-stimulating factor 3 receptor (CSF3R) in acute myeloid leukemia (AML) in an all-round and systematic manner. The purpose of this study was to analyze the CSF3R mutations (CSF3Rmut) in AML with recurrent genetic abnormalities for potential synergistic pathomechanism. PATIENTS AND METHODS We retrospectively screened 1102 adult de novo AML patients with available next-generation sequencing (NGS) information on 132 genes related to hematologic disorders. The χ2, Mann-Whitney U tests were used to analyze their associations with clinicopathologic characteristics, and a propensity score matching (PSM) followed by Kaplan-Meier method was applied to measure their prognostic effects. RESULTS Overall, CSF3Rmut were detected in 40 (3.6%) of 1102 patients with adult de novo AML. CSF3Rmut were predominantly enriched in AML with the CEBPA double mutations (CEBPAdm) (16/122, 13.1%), t(8;21) (12/186, 6.5%) and mutated RUNX1 (3/50, 6.0%), respectively. The CSF3Rmut loci and types differed according to AML subtypes, with frameshift-indels and premature stop confined in the t(8;21) AML [10/12 (83.3%)], and missense recurrently aggregated in the CEBPAdm AML [16/16 (100%)]. Cases with CSF3Rmut had a lower WBC count versus those with CSF3R wild-type (CSF3Rwt) in the t(8;21) AML cohort, with a borderline significance [median 5.45 (range 0.94-20.30) × 109/L) vs. 8.80 (range 0.96-155.00) × 109/L, P = .046]. CSF3Rmut were non-significantly associated with higher WBC counts [median 33.6 (range 6.8-287.6) × 109/L vs. 18.1 (range 1.7-196.0) × 109/L, P = .156] and significantly with lower immunophenotypic CD15 positivity [0/8 (0%) vs. 44/80 (55%), P = .009] as compared to CSF3Rwt in the CEBPAdm AML cohort. After propensity score matching followed by Kaplan-Meier analysis, CSF3Rmut cases had comparable disease-free survival (DFS) and overall survival (OS) to those with CSF3Rwt (P = .607 and P = .842, respectively) in the t(8;21) AML cohort. By contrast, CSF3Rmut showed an inclination towards inferior DFS compared to CSF3Rwt in the CEBPAdm AML cohort [median DFS 19.8 (95%CI 3.1-36.5) months vs. not reached (NR), P = .086]. No significant difference was found for OS between CSF3Rmut and CSF3Rwt cases (P = .943). CONCLUSION We concluded that CSF3Rmut were frequently enriched in patients with t(8;21) and CEBPAdm subtypes among AML, but showed divergent clinicopathologic features, mutation loci and types and differing prognostic aspects.
Collapse
Affiliation(s)
- Biao Wang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Department of Hematology, Changzhou First People's Hospital (The Third Affiliated Hospital of Soochow University), Changzhou, China
| | - Lijun Wen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Zheng Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China; Suzhou Jsuniwell Medical Laboratory, Suzhou, China
| | - Suning Chen
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Huiying Qiu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
7
|
Molina Garay C, Carrillo Sánchez K, Flores Lagunes LL, Jiménez Olivares M, Muñoz Rivas A, Villegas Torres BE, Flores Aguilar H, Núñez Enríquez JC, Jiménez Hernández E, Bekker Méndez VC, Torres Nava JR, Flores Lujano J, Martín Trejo JA, Mata Rocha M, Medina Sansón A, Espinoza Hernández LE, Peñaloza Gonzalez JG, Espinosa Elizondo RM, Flores Villegas LV, Amador Sanchez R, Pérez Saldívar ML, Sepúlveda Robles OA, Rosas Vargas H, Jiménez Morales S, Galindo Delgado P, Mejía Aranguré JM, Alaez Verson C. Mutational Landscape of CEBPA in Mexican Pediatric Acute Myeloid Leukemia Patients: Prognostic Implications. Front Pediatr 2022; 10:899742. [PMID: 35967564 PMCID: PMC9367218 DOI: 10.3389/fped.2022.899742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In Mexico, the incidence of acute myeloid leukemia (AML) has increased in the last few years. Mortality is higher than in developed countries, even though the same chemotherapy protocols are used. CCAAT Enhancer Binding Protein Alpha (CEBPA) mutations are recurrent in AML, influence prognosis, and help to define treatment strategies. CEBPA mutational profiles and their clinical implications have not been evaluated in Mexican pediatric AML patients. AIM OF THE STUDY To identify the mutational landscape of the CEBPA gene in pediatric patients with de novo AML and assess its influence on clinical features and overall survival (OS). MATERIALS AND METHODS DNA was extracted from bone marrow aspirates at diagnosis. Targeted massive parallel sequencing of CEBPA was performed in 80 patients. RESULTS CEBPA was mutated in 12.5% (10/80) of patients. Frameshifts at the N-terminal region were the most common mutations 57.14% (8/14). CEBPA biallelic (CEBPA BI) mutations were identified in five patients. M2 subtype was the most common in CEBPA positive patients (CEBPA POS) (p = 0.009); 50% of the CEBPA POS patients had a WBC count > 100,000 at diagnosis (p = 0.004). OS > 1 year was significantly better in CEBPA negative (CEBPA NEG) patients (p = 0.0001). CEBPA POS patients (either bi- or monoallelic) had a significantly lower OS (p = 0.002). Concurrent mutations in FLT3, CSF3R, and WT1 genes were found in CEBPA POS individuals. Their contribution to poor OS cannot be ruled out. CONCLUSION CEBPA mutational profiles in Mexican pediatric AML patients and their clinical implications were evaluated for the first time. The frequency of CEBPA POS was in the range reported for pediatric AML (4.5-15%). CEBPA mutations showed a negative impact on OS as opposed to the results of other studies.
Collapse
Affiliation(s)
- Carolina Molina Garay
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Karol Carrillo Sánchez
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | | | - Marco Jiménez Olivares
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Anallely Muñoz Rivas
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | | | | | - Juan Carlos Núñez Enríquez
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Elva Jiménez Hernández
- Servicio de Hematología Pediátrica, Hospital General "Gaudencio González Garza", Centro Médico Nacional (CMN) "La Raza", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Vilma Carolina Bekker Méndez
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología "Dr. Daniel Méndez Hernández", "La Raza", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - José Refugio Torres Nava
- Servicio de Oncología, Hospital Pediátrico de Moctezuma, Secretaria de Salud del D.F., Mexico City, Mexico
| | - Janet Flores Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jorge Alfonso Martín Trejo
- Servicio de Hematología Pediátrica, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Minerva Mata Rocha
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Aurora Medina Sansón
- Servicio de Hemato-Oncología, Hospital Infantil de México Federico Gómez, Secretaria de Salud (SSa), Mexico City, Mexico
| | - Laura Eugenia Espinoza Hernández
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | | | - Luz Victoria Flores Villegas
- Servicio de Hematología Pediátrica, Centro Médico Nacional (CMN) "20 de Noviembre", Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Raquel Amador Sanchez
- Hospital General Regional No. 1 "Carlos McGregor Sánchez Navarro", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - María Luisa Pérez Saldívar
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Omar Alejandro Sepúlveda Robles
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Haydeé Rosas Vargas
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional (CMN) "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Silvia Jiménez Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (Inmegen), Mexico City, Mexico
| | | | - Juan Manuel Mejía Aranguré
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (Inmegen), Mexico City, Mexico.,Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carmen Alaez Verson
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| |
Collapse
|
8
|
Kwon A, Ibrahim I, Le T, Jaso JM, Weinberg O, Fuda F, Chen W. CSF3R T618I mutated chronic myelomonocytic leukemia: A proliferative subtype with a distinct mutational profile. Leuk Res Rep 2022; 17:100323. [PMID: 35586707 PMCID: PMC9108757 DOI: 10.1016/j.lrr.2022.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 10/26/2022] Open
|
9
|
Qian Y, Chen Y, Li X. CSF3R T618I, SETBP1 G870S, SRSF2 P95H, and ASXL1 Q780* tetramutation co-contribute to myeloblast transformation in a chronic neutrophilic leukemia. Ann Hematol 2021; 100:1459-1461. [PMID: 33822276 PMCID: PMC8116236 DOI: 10.1007/s00277-021-04491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/08/2021] [Indexed: 10/25/2022]
Abstract
Chronic neutrophilic leukemia (CNL) is a rare but serious myeloid malignancy. In a review of reported cases for WHO-defined CNL, CSF3R mutation is found in about 90% cases and confirmed as the molecular basis of CNL. Concurrent mutations are observed in CSF3R-mutated CNL patients, including ASXL1, SETBP1, SRSF2, JAK2, CALR, TET2, NRAS, U2AF1, and CBL. Both ASXL1 and SETBP1 mutations in CNL have been associated with a poor prognosis, whereas, SRSF2 mutation was undetermined. Our patient was a 77-year-old man and had no significant past medical history and symptoms with leukocytosis. Bone marrow (BM) aspirate and biopsy revealed a markedly hypercellular marrow with prominent left-shifted granulopoiesis. Next-generation sequencing (NGS) of DNA from the BM aspirate of a panel of 28 genes, known to be pathogenic in MDS/MPN, detected mutations in CSF3R, SETBP1, and SRSF2, and a diagnosis of CNL was made. The patient did not use a JAK-STAT pathway inhibitor (ruxolitinib) but started on hydroxyurea and alpha-interferon and developed pruritus after 4 months of diagnosis and nasal hemorrhage 1 month later. Then, the patient was diagnosed with CNL with AML transformation and developed intracranial hemorrhage and died. We repeated NGS and found that three additional mutations were detected: ASXL1, PRKDC, MYOM2; variant allele frequency (VAF) of the prior mutations in CSF3R, SETBP1, and SRSF2 increased. The concurrence of CSF3RT618I, ASXL1, SETBP1, and SRSF2 mutation may be a mutationally detrimental combination and contribute to disease progression and AML transformation, as well as the nonspecific treatment of hydroxyurea and alpha-interferon, but the significance and role of PRKDC and MYOM2 mutations were not undetermined.
Collapse
Affiliation(s)
- Yi Qian
- Department of Hematology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Yan Chen
- Department of Hematology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Xiaoming Li
- Department of Hematology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| |
Collapse
|
10
|
Su H, Wang M, Pang X, Guan F, Li X, Cheng Y. When Glycosylation Meets Blood Cells: A Glance of the Aberrant Glycosylation in Hematological Malignancies. Rev Physiol Biochem Pharmacol 2021; 180:85-117. [PMID: 34031738 DOI: 10.1007/112_2021_60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Among neoplasia-associated epigenetic alterations, changes in cellular glycosylation have recently received attention as a key component of hematological malignancy progression. Alterations in glycosylation appear to not only directly impact cell growth and survival, but also alter the adhesion of tumor cells and their interactions with the microenvironment, facilitating cancer-induced immunomodulation and eventual metastasis. Changes in glycosylation arise from altered expression of glycosyltransferases, enzymes that catalyze the transfer of saccharide moieties to a wide range of acceptor substrates, such as proteins, lipids, and other saccharides in the endoplasmic reticulum (ER) and Golgi apparatus. Novel glycan structures in hematological malignancies represent new targets for the diagnosis and treatment of blood diseases. This review summarizes studies of the aberrant expression of glycans commonly found in hematological malignancies and their potential mechanisms and defines the specific roles of glycans as drivers or passengers in the development of hematological malignancies.
Collapse
Affiliation(s)
- Huining Su
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mimi Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xingchen Pang
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Science, Northwest University, Xi'an, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Science, Northwest University, Xi'an, China
| | - Xiang Li
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Science, Northwest University, Xi'an, China.
| | - Ying Cheng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
11
|
Trottier AM, Druhan LJ, Kraft IL, Lance A, Feurstein S, Helgeson M, Segal JP, Das S, Avalos BR, Godley LA. Heterozygous germ line CSF3R variants as risk alleles for development of hematologic malignancies. Blood Adv 2020; 4:5269-5284. [PMID: 33108454 PMCID: PMC7594406 DOI: 10.1182/bloodadvances.2020002013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
Colony-stimulating factor 3 receptor (CSF3R) encodes the receptor for granulocyte colony-stimulating factor (G-CSF), a cytokine vital for granulocyte proliferation and differentiation. Acquired activating heterozygous variants in CSF3R are the main cause of chronic neutrophilic leukemia, a hyperproliferative disorder. In contrast, biallelic germ line hypomorphic variants in CSF3R are a rare cause of severe congenital neutropenia, a hypoproliferative condition. The impact of heterozygous germ line CSF3R variants, however, is unknown. We identified CSF3R as a new germ line hematologic malignancy predisposition gene through analysis of 832 next-generation sequencing tests conducted in 632 patients with hematologic malignancies. Among germ line CSF3R variants, 3 were abnormal in functional testing, indicating their deleterious nature. p.Trp547* was identified in 2 unrelated men with myelodysplastic syndromes diagnosed at 76 and 33 years of age, respectively. p.Trp547* is a loss-of-function nonsense variant in the extracellular domain that results in decreased CSF3R messenger RNA expression and abrogation of CSF3R surface expression and proliferative responses to G-CSF. p.Ala119Thr is a missense variant found in 2 patients with multiple myeloma and acute lymphoblastic leukemia, respectively. This variant is located between the extracellular immunoglobulin-like and cytokine receptor homology domains and results in decreased G-CSF sensitivity. p.Pro784Thr was identified in a 67-year-old man with multiple myeloma. p.Pro784Thr is a missense variant in the cytoplasmic domain that inhibits CSF3R internalization, producing a gain-of-function phenotype and G-CSF hypersensitivity. Our findings identify germ line heterozygous CSF3R variants as risk factors for development of myeloid and lymphoid malignancies.
Collapse
Affiliation(s)
- Amy M Trottier
- Section of Hematology/Oncology, Department of Medicine, and
- University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, IL
| | - Lawrence J Druhan
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC; and
| | - Ira L Kraft
- Section of Hematology/Oncology, Department of Medicine, and
- University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, IL
- Internal Medicine-Pediatrics Residency Program, Department of Medicine
| | - Amanda Lance
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC; and
| | - Simone Feurstein
- Section of Hematology/Oncology, Department of Medicine, and
- University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, IL
| | | | - Jeremy P Segal
- Department of Pathology, University of Chicago, Chicago, IL
| | - Soma Das
- Department of Human Genetics, and
| | - Belinda R Avalos
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC; and
| | - Lucy A Godley
- Section of Hematology/Oncology, Department of Medicine, and
- University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, IL
- Department of Human Genetics, and
| |
Collapse
|