1
|
Weiss KR, Huisken J, Khanjani N, Bakalov V, Engle ML, Krzyzanowski MC, Madden T, Maiese DR, Waterfield JR, Williams DN, Wood L, Wu X, Hamilton CM, Huggins W. T-CLEARE: a pilot community-driven tissue clearing protocol repository. Front Bioeng Biotechnol 2024; 12:1304622. [PMID: 39351064 PMCID: PMC11439823 DOI: 10.3389/fbioe.2024.1304622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/18/2024] [Indexed: 10/04/2024] Open
Abstract
Selecting and implementing a tissue clearing protocol is challenging. Established more than 100 years ago, tissue clearing is still a rapidly evolving field of research. There are currently many published protocols to choose from, and each performs better or worse across a range of key evaluation factors (e.g., speed, cost, tissue stability, fluorescence quenching). Additionally, tissue clearing protocols are often optimized for specific experimental contexts, and applying an existing protocol to a new problem can require a lengthy period of adaptation by trial and error. Although the primary literature and review articles provide a useful starting point for optimization, there is growing recognition that results can vary dramatically with changes to tissue type or antibody used. To help address this issue, we have developed a novel, freely available repository of tissue clearing protocols named T-CLEARE (Tissue CLEAring protocol REpository; https://doryworkspace.org/doryviz). T-CLEARE incorporates community responses to an open survey designed to capture details not commonly found in the scientific literature, including modifications to published protocols required for specific use cases and instances when tissue clearing protocols did not perform well (negative results). The goal of T-CLEARE is to help the community share evaluations and modifications of tissue clearing protocols for various tissue types and potentially identify best-in-class methods for a given application.
Collapse
Affiliation(s)
- Kurt R. Weiss
- Morgridge Institute for Research, Madison, WI, United States
| | - Jan Huisken
- Morgridge Institute for Research, Madison, WI, United States
| | - Neda Khanjani
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Vesselina Bakalov
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| | - Michelle L. Engle
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| | | | - Tom Madden
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| | - Deborah R. Maiese
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| | - Justin R. Waterfield
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| | - David N. Williams
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| | - Lauren Wood
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| | - Xin Wu
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| | - Carol M. Hamilton
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| | - Wayne Huggins
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| |
Collapse
|
2
|
Jin BH, Woo J, Lee M, Ku S, Moon HS, Ryu SJ, Hyun YM, Park JY, Kuh SU, Cho YE. Optimization of the optical transparency of bones by PACT-based passive tissue clearing. Exp Mol Med 2023; 55:2190-2204. [PMID: 37779150 PMCID: PMC10618275 DOI: 10.1038/s12276-023-01089-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 10/03/2023] Open
Abstract
Recent developments in tissue clearing methods such as the passive clearing technique (PACT) have allowed three-dimensional analysis of biological structures in whole, intact tissues, thereby providing a greater understanding of spatial relationships and biological circuits. Nonetheless, the issues that remain in maintaining structural integrity and preventing tissue expansion/shrinkage with rapid clearing still inhibit the wide application of these techniques in hard bone tissues, such as femurs and tibias. Here, we present an optimized PACT-based bone-clearing method, Bone-mPACT+, that protects biological structures. Bone-mPACT+ and four different decalcifying procedures were tested for their ability to improve bone tissue clearing efficiency without sacrificing optical transparency; they rendered nearly all types of bone tissues transparent. Both mouse and rat bones were nearly transparent after the clearing process. We also present a further modification, the Bone-mPACT+ Advance protocol, which is specifically optimized for processing the largest and hardest rat bones for easy clearing and imaging using established tissue clearing methods.
Collapse
Affiliation(s)
- Byung-Ho Jin
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- College of Medicine, Yonsei University Graduate School, Seoul, 03722, Republic of Korea
- Department of Neurosurgery, International ST Mary´s Hospital, College of Medicine, Catholic Kwandong University, Incheon, 22711, Republic of Korea
| | - Jiwon Woo
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Biomedical Research Institute, Biohedron, Seoul, 06230, Republic of Korea
- Biomedical Research Center, Gangnam Severance Hospital, Seoul, 06230, Republic of Korea
| | - Mirae Lee
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Biomedical Research Center, Gangnam Severance Hospital, Seoul, 06230, Republic of Korea
| | - Seockmo Ku
- Department of Food Science and Technology, Texas A&M University, College Station, TX, 77843, USA
| | - Hyung Seok Moon
- Biomedical Research Center, Gangnam Severance Hospital, Seoul, 06230, Republic of Korea
| | - Seung Jun Ryu
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- Department of Neurosurgery, Daejeon Eulji Medical Center, Eulji University, Daejeon, 35233, Republic of Korea
| | - Young-Min Hyun
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jeong-Yoon Park
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- College of Medicine, Yonsei University Graduate School, Seoul, 03722, Republic of Korea
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sung Uk Kuh
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- College of Medicine, Yonsei University Graduate School, Seoul, 03722, Republic of Korea
- Biomedical Research Center, Gangnam Severance Hospital, Seoul, 06230, Republic of Korea
- Department of Medical Device Engineering and Management, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yong Eun Cho
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.
- College of Medicine, Yonsei University Graduate School, Seoul, 03722, Republic of Korea.
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Department of Neurosurgery, Wiltse Memorial Hospital, Suwon-si, Gyeonggi-do, 16480, Republic of Korea.
| |
Collapse
|
3
|
Weiss K, Huisken J, Bakalov V, Engle M, Gridley L, Krzyzanowski MC, Madden T, Maiese D, Waterfield J, Williams D, Wu X, Hamilton CM, Huggins W. T-CLEARE: A Pilot Community-Driven Tissue-Clearing Protocol Repository. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531970. [PMID: 36945489 PMCID: PMC10028991 DOI: 10.1101/2023.03.09.531970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Selecting and implementing a tissue-clearing protocol is challenging. Established more than 100 years ago, tissue clearing is still a rapidly evolving field of research. There are currently many published protocols to choose from, and each performs better or worse across a range of key evaluation factors (e.g., speed, cost, tissue stability, fluorescence quenching). Additionally, tissue-clearing protocols are often optimized for specific experimental contexts, and applying an existing protocol to a new problem can require a lengthy period of adaptation by trial and error. Although the primary literature and review articles provide a useful starting point for optimization, there is growing recognition that many articles do not provide sufficient detail to replicate or reproduce experimental results. To help address this issue, we have developed a novel, freely available repository of tissue-clearing protocols named T-CLEARE (Tissue CLEAring protocol REpository; https://doryworkspace.org/doryviz). T-CLEARE incorporates community responses to an open survey designed to capture details not commonly found in the scientific literature, including modifications to published protocols required for specific use cases and instances when tissue-clearing protocols did not perform well (negative results). The goal of T-CLEARE is to provide a forum for the community to share evaluations and modifications of tissue-clearing protocols for various tissue types and potentially identify best-in-class methods for a given application.
Collapse
Affiliation(s)
- Kurt Weiss
- Morgridge Institute for Research, 330 N Orchard Street, Madison, WI, 53715, USA
| | - Jan Huisken
- Morgridge Institute for Research, 330 N Orchard Street, Madison, WI, 53715, USA
| | - Vesselina Bakalov
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Michelle Engle
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Lauren Gridley
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Michelle C Krzyzanowski
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Tom Madden
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Deborah Maiese
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Justin Waterfield
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - David Williams
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Xin Wu
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Carol M Hamilton
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Wayne Huggins
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
4
|
Woo J, Lee EY, Lee M, Ku S, Park JY, Cho YE. Comparative Analyses of Clearing Efficacies of Tissue Clearing Protocols by Using a Punching Assisted Clarity Analysis. Front Bioeng Biotechnol 2022; 9:784626. [PMID: 35155401 PMCID: PMC8831720 DOI: 10.3389/fbioe.2021.784626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/30/2021] [Indexed: 02/03/2023] Open
Abstract
The advent of tissue clearing methods, in conjunction with novel high-resolution imaging techniques, has enabled the visualization of three-dimensional structures with unprecedented depth and detail. Although a variety of clearing protocols have been developed, little has been done to quantify their efficacies in a systematic, reproducible fashion. Here, we present two simple assays, Punching-Assisted Clarity Analysis (PACA)-Light and PACA-Glow, which use easily accessible spectroscopy and gel documentation systems to quantify the transparency of multiple cleared tissues simultaneously. We demonstrate the use of PACA-Light and PACA-Glow to compare twenty-eight tissue clearing protocols on rodent brains. We also show that regional differences exist in tissue transparency in the rodent brain, with cerebellar tissue consistently achieving lower clearing levels compared to the prefrontal or cerebral cortex across all protocols. This represents the largest comparative study of tissue clearing protocols to date, made possible by the high-throughput nature of our PACA platforms.
Collapse
Affiliation(s)
- Jiwon Woo
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Biomedical Research Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Biomedical Research Institute, Biohedron Therapeutics Co., Ltd., Seoul, South Korea
| | - Eunice Yoojin Lee
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Mirae Lee
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Biomedical Research Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Seockmo Ku
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Jeong-Yoon Park
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Biomedical Research Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Eun Cho
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Biomedical Research Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
5
|
Lee M, Woo J, Kim DH, Yang YM, Lee EY, Kim JH, Kang SG, Shim JK, Park JY. A novel paper MAP method for rapid high resolution histological analysis. Sci Rep 2021; 11:23340. [PMID: 34857810 PMCID: PMC8639998 DOI: 10.1038/s41598-021-02632-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
Three-dimensional visualization of cellular and subcellular-structures in histological-tissues is essential for understanding the complexities of biological-phenomena, especially with regards structural and spatial relationships and pathologlical-diagnosis. Recent advancements in tissue-clearing technology, such as Magnified Analysis of Proteome (MAP), have significantly improved our ability to study biological-structures in three-dimensional space; however, their wide applicability to a variety of tissues is limited by long incubation-times and a need for advanced imaging-systems that are not readily available in most-laboratories. Here, we present optimized MAP-based method for paper-thin samples, Paper-MAP, which allow for rapid clearing and subsequent imaging of three-dimensional sections derived from various tissues using conventional confocal-microscopy. Paper-MAP successfully clear tissues within 1-day, compared to the original-MAP, without significant differences in achieved optical-transparency. As a proof-of-concept, we investigated the vasculature and neuronal-networks of a variety of human and rodent tissues processed via Paper-MAP, in both healthy and diseased contexts, including Alzheimer’s disease and glioma.
Collapse
Affiliation(s)
- Mirae Lee
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.,Biomedical Research Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
| | - Jiwon Woo
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.,Biomedical Research Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.,Biomedical Research Institute, Biohedron Therapeutics Co., Ltd, Seoul, 06273, Republic of Korea
| | - Doh-Hee Kim
- Research Institute, Seoul Medical Center, Seoul, 02053, Republic of Korea
| | - Yu-Mi Yang
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.,Biomedical Research Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
| | - Eunice Yoojin Lee
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Jung-Hee Kim
- Research Institute, Seoul Medical Center, Seoul, 02053, Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Department of Medical Sciences, Yonsei University Graduate School, Seoul, 03722, Republic of Korea
| | - Jin-Kyung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jeong-Yoon Park
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea. .,The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea. .,Biomedical Research Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.
| |
Collapse
|
6
|
Rienzo M, Di Zazzo E, Casamassimi A, Gazzerro P, Perini G, Bifulco M, Abbondanza C. PRDM12 in Health and Diseases. Int J Mol Sci 2021; 22:ijms222112030. [PMID: 34769459 PMCID: PMC8585061 DOI: 10.3390/ijms222112030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
PRDM12 is a member of the PRDI-BF1 (positive regulatory domain I-binding factor 1) homologous domain (PRDM)-containing protein family, a subfamily of Kruppel-like zinc finger proteins, controlling key processes in the development of cancer. PRDM12 is expressed in a spatio-temporal manner in neuronal systems where it exerts multiple functions. PRDM12 is essential for the neurogenesis initiation and activation of a cascade of downstream pro-neuronal transcription factors in the nociceptive lineage. PRDM12 inactivation, indeed, results in a complete absence of the nociceptive lineage, which is essential for pain perception. Additionally, PRDM12 contributes to the early establishment of anorexigenic neuron identity and the maintenance of high expression levels of pro-opiomelanocortin, which impacts on the program bodyweight homeostasis. PRDMs are commonly involved in cancer, where they act as oncogenes/tumor suppressors in a “Yin and Yang” manner. PRDM12 is not usually expressed in adult normal tissues but its expression is re-activated in several cancer types. However, little information is currently available on PRDM12 expression in cancers and its mechanism of action has not been thoroughly described. In this review, we summarize the recent findings regarding PRDM12 by focusing on four main biological processes: neurogenesis, pain perception, oncogenesis and cell metabolism. Moreover, we wish to highlight the importance of future studies focusing on the PRDM12 signaling pathway(s) and its role in cancer onset and progression.
Collapse
Affiliation(s)
- Monica Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Erika Di Zazzo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Amelia Casamassimi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy;
- Correspondence:
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Salerno, Italy;
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy;
| |
Collapse
|
7
|
Kokotović T, Langeslag M, Lenartowicz EM, Manion J, Fell CW, Alehabib E, Tafakhori A, Darvish H, Bellefroid EJ, Neely GG, Kress M, Penninger JM, Nagy V. PRDM12 Is Transcriptionally Active and Required for Nociceptor Function Throughout Life. Front Mol Neurosci 2021; 14:720973. [PMID: 34646120 PMCID: PMC8502974 DOI: 10.3389/fnmol.2021.720973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/20/2021] [Indexed: 12/21/2022] Open
Abstract
PR domain-containing member 12 (PRDM12) is a key developmental transcription factor in sensory neuronal specification and survival. Patients with rare deleterious variants in PRDM12 are born with congenital insensitivity to pain (CIP) due to the complete absence of a subtype of peripheral neurons that detect pain. In this paper, we report two additional CIP cases with a novel homozygous PRDM12 variant. To elucidate the function of PRDM12 during mammalian development and adulthood, we generated temporal and spatial conditional mouse models. We find that PRDM12 is expressed throughout the adult nervous system. We observed that loss of PRDM12 during mid-sensory neurogenesis but not in the adult leads to reduced survival. Comparing cellular biophysical nociceptive properties in developmental and adult-onset PRDM12 deletion mouse models, we find that PRDM12 is necessary for proper nociceptive responses throughout life. However, we find that PRDM12 regulates distinct age-dependent transcriptional programs. Together, our results implicate PRDM12 as a viable therapeutic target for specific pain therapies even in adults.
Collapse
Affiliation(s)
- Tomislav Kokotović
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Michiel Langeslag
- Department of Physiology and Medical Physics, Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria.,Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria.,Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ewelina M Lenartowicz
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - John Manion
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Christopher W Fell
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Elham Alehabib
- Student Research Committee, Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Tafakhori
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Darvish
- Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Eric J Bellefroid
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - G Gregory Neely
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Michaela Kress
- Department of Physiology and Medical Physics, Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC - Vienna BioCenter, Vienna, Austria.,Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, BC, Canada
| | - Vanja Nagy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Abstract
Tissue clearing increases the transparency of late developmental stages and enables deep imaging in fixed organisms. Successful implementation of these methodologies requires a good grasp of sample processing, imaging and the possibilities offered by image analysis. In this Primer, we highlight how tissue clearing can revolutionize the histological analysis of developmental processes and we advise on how to implement effective clearing protocols, imaging strategies and analysis methods for developmental biology.
Collapse
Affiliation(s)
| | - Nicolas Renier
- Sorbonne Université, Paris Brain Institute – ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| |
Collapse
|
9
|
Investigation of PRDM10 and PRDM13 Expression in Developing Mouse Embryos by an Optimized PACT-Based Embryo Clearing Method. Int J Mol Sci 2021; 22:ijms22062892. [PMID: 33809237 PMCID: PMC8000312 DOI: 10.3390/ijms22062892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
Recent developments in tissue clearing methods have significantly advanced the three-dimensional analysis of biological structures in whole, intact tissue, providing a greater understanding of spatial relationships and biological circuits. Nonetheless, studies have reported issues with maintaining structural integrity and preventing tissue disintegration, limiting the wide application of these techniques to fragile tissues such as developing embryos. Here, we present an optimized passive tissue clearing technique (PACT)-based embryo clearing method, initial embedding PACT (IMPACT)-Basic, that improves tissue rigidity without compromising optical transparency. We also present IMPACT-Advance, which is specifically optimized for thin slices of mouse embryos past E13.5. We demonstrate proof-of-concept by investigating the expression of two relatively understudied PR domain (PRDM) proteins, PRDM10 and PRDM13, in intact cleared mouse embryos at various stages of development. We observed strong PRDM10 and PRDM13 expression in the developing nervous system and skeletal cartilage, suggesting a functional role for these proteins in these tissues throughout embryogenesis.
Collapse
|
10
|
Liang X, Luo H. Optical Tissue Clearing: Illuminating Brain Function and Dysfunction. Theranostics 2021; 11:3035-3051. [PMID: 33537072 PMCID: PMC7847687 DOI: 10.7150/thno.53979] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
Abstract
Tissue optical clearing technology has been developing rapidly in the past decade due to advances in microscopy equipment and various labeling techniques. Consistent modification of primary methods for optical tissue transparency has allowed observation of the whole mouse body at single-cell resolution or thick tissue slices at the nanoscale level, with the final aim to make intact primate and human brains or thick human brain tissues optically transparent. Optical clearance combined with flexible large-volume tissue labeling technology can not only preserve the anatomical structure but also visualize multiple molecular information from intact samples in situ. It also provides a new strategy for studying complex tissues, which is of great significance for deciphering the functional structure of healthy brains and the mechanisms of neurological pathologies. In this review, we briefly introduce the existing optical clearing technology and discuss its application in deciphering connection and structure, brain development, and brain diseases. Besides, we discuss the standard computational analysis tools for large-scale imaging dataset processing and information extraction. In general, we hope that this review will provide a valuable reference for researchers who intend to use optical clearing technology in studying the brain.
Collapse
Affiliation(s)
- Xiaohan Liang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Haiming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| |
Collapse
|