1
|
Zou M, Liu G, Li Y. Case report: Application of non-VKA oral anticoagulants in patient of idiopathic hypereosinophilic syndrome with intracardiac thrombus. Front Pharmacol 2022; 13:1018394. [PMID: 36199682 PMCID: PMC9529005 DOI: 10.3389/fphar.2022.1018394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Idiopathic hypereosinophilic syndrome (IHES) is a rare but life-threatening disease related to a group of myeloproliferative disorders characterized by prolonged eosinophilia of unknown cause and inflammatory damage to multiple organs. Here, we present a 44-year-old female patient complaining of shortness of breath and palpitations for 1 month. Her history and presentation were unremarkable, except for a 3-years history of rheumatoid arthritis treated with ibuprofen (0.3 g per day). Initial examination showed heart rate (HR) 120 bpm, respiratory rate (RR) 20 bpm, temperature (T) 36°C, blood pressure (BP) 130/70 mmHg, ventricular gallop rhythm, rales at the lung bases, soft abdomen, nonpalpable liver and spleen, and slight edema in both lower extremities. Bone marrow aspirate and biopsy confirmed the diagnosis of IHES, while cardiac MRI showed intracardiac thrombus. The symptoms of shortness of breath and palpitation disappeared, the eosinophil counts in routine blood tests were normal, and the thrombus in the cardiac cavity gradually disappeared after combined therapy of anti-hypereosinophilic, anti-coagulant and anti-heart failure treatments.
Collapse
Affiliation(s)
- Man Zou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Geyan Liu
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanhui Li
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yanhui Li,
| |
Collapse
|
2
|
Zhang S, Liu B, Wang W, Lv L, Gao D, Chai M, Li M, Wu Z, Zhu Y, Ma J, Leng L. The "Matrisome" reveals the characterization of skin keloid microenvironment. FASEB J 2021; 35:e21237. [PMID: 33715180 DOI: 10.1096/fj.202001660rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/29/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
Keloids are fibroproliferative dermal tumors of unknown origin that are characterized by the overabundant accumulation of extracellular matrix (ECM) components. The mechanism of keloid formation has remained unclear because of a poor understanding of its molecular basis. In this study, the dermal ECM components of keloids were identified and the pathological features of keloid formation were characterized using large-scale quantitative proteomic analyses of decellularized keloid biomatrix scaffolds. We identified a total of 267 dermal core ECM and ECM-associated proteins that were differentially expressed between patients with keloids and healthy controls. Skin mechanical properties and biological processes including protease activity, wound healing, and adhesion were disordered in keloids. The integrated network analysis of the upregulated ECM proteins revealed multiple signaling pathways involved in these processes that may lead to keloid formation. Our findings may improve the scientific basis of keloid treatment and provide new ideas for the establishment of keloid models.
Collapse
Affiliation(s)
- Shikun Zhang
- Stem Cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Department of Stem Cell and Regenerative Medicine Laboratory, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Binghui Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China
| | - Wenjuan Wang
- Department of Dermatology, Chinese PLA General Hospital, Beijing, China
| | - Luye Lv
- Institute of NBC Defense, Beijing, China
| | - Dunqin Gao
- Stem Cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Mi Chai
- Department of Plastic and Reconstruction Surgery, Chinese PLA General Hospital, Beijing, China
| | - Mansheng Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China
| | - Zhihong Wu
- Stem Cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China.,Basic Medical School, Anhui Medical University, Anhui, China
| | - Jie Ma
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China
| | - Ling Leng
- Stem Cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Leng L, Ma J, Lv L, Wang W, Gao D, Zhu Y, Wu Z. Both Wnt signaling and epidermal stem cell-derived extracellular vesicles are involved in epidermal cell growth. Stem Cell Res Ther 2020; 11:415. [PMID: 32967725 PMCID: PMC7510321 DOI: 10.1186/s13287-020-01933-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/29/2020] [Accepted: 09/10/2020] [Indexed: 11/10/2022] Open
Abstract
Millions suffer from skin diseases. Functional interfollicular epidermal stem cells are needed in skin therapy or drug screening in vitro. We obtained functional interfollicular epidermal stem cells with intact stemness and cell junctions by treating them with Wnt3a. Moreover, epidermal stem cell-derived extracellular vesicles were useful in epidermal cell growth. Finally, functional epidermal 3D organoids with polarity were cultured using Wnt3a and the supernatant derived from interfollicular epidermal stem cells and fresh medium in a 1:1 ratio. These results provide novel directions for the improvement of skin organoids and their potential in clinical application.
Collapse
Affiliation(s)
- Ling Leng
- Stem Cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| | - Jie Ma
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China
| | - Luye Lv
- Institute of NBC Defense, Beijing, China
| | - Wenjuan Wang
- Department of Dermatology, Chinese PLA General Hospital, Beijing, China
| | - Dunqin Gao
- Stem Cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China.,Basic Medical School, Anhui Medical University, Hefei, Anhui, China
| | - Zhihong Wu
- Stem Cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Liu B, Zhang S, Wang W, Yun Z, Lv L, Chai M, Wu Z, Zhu Y, Ma J, Leng L. Matrisome Provides a Supportive Microenvironment for Skin Functions of Diverse Species. ACS Biomater Sci Eng 2020; 6:5720-5733. [PMID: 33320565 DOI: 10.1021/acsbiomaterials.0c00479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A biomaterial scaffold is a promising tool employed to drive tissue regeneration. This technology has been successfully applied in human tissue rebuilding, particularly for the skin. Meanwhile, there is still room for further improvement, such as maintaining sufficient functionality of a biomaterial scaffold. Here, we developed a new decellularization method to generate a complete anatomical skin biomatrix scaffold with a preserved extracellular matrix (ECM) architecture. We performed proteomic and bioinformatic analyses of the skin scaffold maps of humans, pigs, and rats and systematically analyzed the interaction between ECM proteins and different cell types in the skin microenvironment. These interactions served to quantify the structure and function of the skin's Matrisome comprising core ECM components and ECM-associated soluble signaling molecules required for the regulation of epidermal development. We primarily found that the properties of the skin ECM were species-specific. For example, the composition and function of the ECM of the human skin were more similar to those of pigs compared with those of rats. However, the skin ECM of the pig was significantly deficient in its enzyme systems and immune regulatory factors compared with that of humans. These findings provide a new understanding of the role of the skin ECM niche as well as an attractive strategy that can apply tissue engineering principles to skin biomatrix scaffold materials, which promises to accelerate and enhance tissue regeneration.
Collapse
Affiliation(s)
- Binghui Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, No. 38 Life Science Park Road, Beijing 102206, China
| | - Shikun Zhang
- Department of Stem Cell and Regenerative Medicine Laboratory, Institute of Health Service and Transfusion Medicine, No. 27 Taiping Road, Beijing 100850, China
| | - Wenjuan Wang
- Department of Dermatology, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Zhimin Yun
- Department of Stem Cell and Regenerative Medicine Laboratory, Institute of Health Service and Transfusion Medicine, No. 27 Taiping Road, Beijing 100850, China
| | - Luye Lv
- Institute of NBC Defense, No. 1 Central North Street, Beijing 102205, China
| | - Mi Chai
- Department of Plastic and Reconstruction Surgery, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Zhihong Wu
- Department of Medical Science Research Center, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing 100730, China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, No. 38 Life Science Park Road, Beijing 102206, China.,Basic Medical School, Anhui Medical University, No. 81 Meishan Road, Anhui 230032, China
| | - Jie Ma
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, No. 38 Life Science Park Road, Beijing 102206, China
| | - Ling Leng
- Department of Medical Science Research Center, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing 100730, China
| |
Collapse
|