1
|
Alcaraz-Guzmán A, Amaro-Palomo EJ, Ruiz-Beltrán AM, Díaz-Herrera BÁ, Neri-Bale RR, Hernández-Bravo L, Candia-Ramírez MA, Gopar-Nieto R, González-Pacheco H, Sierra-Lara Martinez JD, Arias-Mendoza A, Araiza-Garaygordobil D. A randomized controlled trial of ivabradine in patients with acute myocardial infarction related cardiogenic shock. ARCHIVOS PERUANOS DE CARDIOLOGIA Y CIRUGIA CARDIOVASCULAR 2024; 5:e342. [PMID: 39015193 PMCID: PMC11247970 DOI: 10.47487/apcyccv.v5i2.342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/15/2024] [Indexed: 07/18/2024]
Abstract
Objective . Acute myocardial infarction-related cardiogenic shock (AMI-CS) is often accompanied by tachycardia, which, in turn, increases myocardial oxygen consumption and hinders the use of ventricular assist devices, such as intra-aortic balloon pump. Evidence suggests that ivabradine may reduce heart rate (HR) without affecting other hemodynamic parameters. The aim of the present study was to determine the effect of ivabradine on reducing HR and changes in other hemodynamic parameters such as cardiac index (CI), in patients with AMI-CS and tachycardia. Materials and methods . A single-center, open label, randomized clinical trial included patients diagnosed with AMI-CS and tachycardia with >100 beats per minute (BPM). Heart rate, cardiac index, and other hemodynamic parameters measured by pulmonary flotation catheter were compared at 0, 6, 12, 24, and 48 hours after randomization. Results . A total of 12 patients were randomized; 6 received standard therapy, and 6 received ivabradine in addition to standard therapy. Baseline clinical characteristics were similar at randomization. A statistically significant lower heart rate was found at 12 hours (p=0.003) and 48 hours (p=0.029) after randomization, with differences of -23.3 (-8.2 to -38.4) BPM and -12.6 (-0.5 to -25.9) BPM, respectively. No differences in cardiac index, or any other evaluated hemodynamic parameters, length of hospital stay, nor mortality rate were noted between both groups. Conclusions . The use of ivabradine in patients with AMI-CS was associated with a significant reduction in heart rate at 12 and 48 h, without affecting other hemodynamic parameters.
Collapse
Affiliation(s)
- Alejandro Alcaraz-Guzmán
- Coronary Care Unit, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico.Coronary Care UnitNational Institute of Cardiology “Ignacio Chávez”Mexico CityMexico
| | - Eder Jonathan Amaro-Palomo
- Coronary Care Unit, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico.Coronary Care UnitNational Institute of Cardiology “Ignacio Chávez”Mexico CityMexico
| | - Arturo Maximiliano Ruiz-Beltrán
- Coronary Care Unit, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico.Coronary Care UnitNational Institute of Cardiology “Ignacio Chávez”Mexico CityMexico
| | - Braiana Ángeles Díaz-Herrera
- Coronary Care Unit, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico.Coronary Care UnitNational Institute of Cardiology “Ignacio Chávez”Mexico CityMexico
| | - Raúl Rodrigo Neri-Bale
- Coronary Care Unit, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico.Coronary Care UnitNational Institute of Cardiology “Ignacio Chávez”Mexico CityMexico
| | - Lilia Hernández-Bravo
- Coronary Care Unit, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico.Coronary Care UnitNational Institute of Cardiology “Ignacio Chávez”Mexico CityMexico
| | - Manuel A. Candia-Ramírez
- Coronary Care Unit, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico.Coronary Care UnitNational Institute of Cardiology “Ignacio Chávez”Mexico CityMexico
| | - Rodrigo Gopar-Nieto
- Coronary Care Unit, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico.Coronary Care UnitNational Institute of Cardiology “Ignacio Chávez”Mexico CityMexico
| | - Héctor González-Pacheco
- Coronary Care Unit, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico.Coronary Care UnitNational Institute of Cardiology “Ignacio Chávez”Mexico CityMexico
| | - Jorge Daniel Sierra-Lara Martinez
- Coronary Care Unit, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico.Coronary Care UnitNational Institute of Cardiology “Ignacio Chávez”Mexico CityMexico
| | - Alexandra Arias-Mendoza
- Coronary Care Unit, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico.Coronary Care UnitNational Institute of Cardiology “Ignacio Chávez”Mexico CityMexico
| | - Diego Araiza-Garaygordobil
- Coronary Care Unit, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico.Coronary Care UnitNational Institute of Cardiology “Ignacio Chávez”Mexico CityMexico
| |
Collapse
|
2
|
Lyman KA, Han Y, Robinson AP, Weinberg SE, Fisher DW, Heuermann RJ, Lyman RE, Kim DK, Ludwig A, Chandel NS, Does MD, Miller SD, Chetkovich DM. Characterization of hyperpolarization-activated cyclic nucleotide-gated channels in oligodendrocytes. Front Cell Neurosci 2024; 18:1321682. [PMID: 38469353 PMCID: PMC10925711 DOI: 10.3389/fncel.2024.1321682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Mature oligodendrocytes (OLG) are the myelin-forming cells of the central nervous system. Recent work has shown a dynamic role for these cells in the plasticity of neural circuits, leading to a renewed interest in voltage-sensitive currents in OLG. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and their respective current (Ih) were recently identified in mature OLG and shown to play a role in regulating myelin length. Here we provide a biochemical and electrophysiological characterization of HCN channels in cells of the oligodendrocyte lineage. We observed that mice with a nonsense mutation in the Hcn2 gene (Hcn2ap/ap) have less white matter than their wild type counterparts with fewer OLG and fewer oligodendrocyte progenitor cells (OPCs). Hcn2ap/ap mice have severe motor impairments, although these deficits were not observed in mice with HCN2 conditionally eliminated only in oligodendrocytes (Cnpcre/+; Hcn2F/F). However, Cnpcre/+; Hcn2F/F mice develop motor impairments more rapidly in response to experimental autoimmune encephalomyelitis (EAE). We conclude that HCN2 channels in OLG may play a role in regulating metabolism.
Collapse
Affiliation(s)
- Kyle A. Lyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Ye Han
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Andrew P. Robinson
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University, Chicago, IL, United States
| | - Samuel E. Weinberg
- Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniel W. Fisher
- Department of Psychiatry, University of Washington, Seattle, WA, United States
| | - Robert J. Heuermann
- Department of Neurology, Washington University, St. Louis, MO, United States
| | - Reagan E. Lyman
- Heritage College of Osteopathic Medicine, Ohio University, Dublin, OH, United States
| | - Dong Kyu Kim
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Electrical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Andreas Ludwig
- Institut fur Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Navdeep S. Chandel
- Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Mark D. Does
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Electrical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Stephen D. Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University, Chicago, IL, United States
| | - Dane M. Chetkovich
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
3
|
Abstract
Mitochondria are involved in multiple cellular tasks, such as ATP synthesis, metabolism, metabolite and ion transport, regulation of apoptosis, inflammation, signaling, and inheritance of mitochondrial DNA. The majority of the correct functioning of mitochondria is based on the large electrochemical proton gradient, whose component, the inner mitochondrial membrane potential, is strictly controlled by ion transport through mitochondrial membranes. Consequently, mitochondrial function is critically dependent on ion homeostasis, the disturbance of which leads to abnormal cell functions. Therefore, the discovery of mitochondrial ion channels influencing ion permeability through the membrane has defined a new dimension of the function of ion channels in different cell types, mainly linked to the important tasks that mitochondrial ion channels perform in cell life and death. This review summarizes studies on animal mitochondrial ion channels with special focus on their biophysical properties, molecular identity, and regulation. Additionally, the potential of mitochondrial ion channels as therapeutic targets for several diseases is briefly discussed.
Collapse
Affiliation(s)
- Ildiko Szabo
- Department of Biology, University of Padova, Italy;
| | - Adam Szewczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland;
| |
Collapse
|
4
|
Ge S, Zhang L, Cui X, Li Y. Protective effects of brain-targeted dexmedetomidine nanomicelles on mitochondrial dysfunction in astrocytes of cerebral ischemia/reperfusion injury rats. Neuroscience 2022; 498:203-213. [PMID: 35817219 DOI: 10.1016/j.neuroscience.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022]
Abstract
Cerebral ischemia/reperfusion injury (CIRI) is closely related to mitochondrial dysfunction in astrocytes. Therefore, based on glucose transporter 1 (GLUT1), which is highly expressed in the brain tissue of rats with CIRI, we design a kind of brain-targeted dexmedetomidine (Man@Dex) nanomicelles. The results showed that Man@Dex not only had the advantages of small particle size, stability and non-toxicity, but also realized brain-targeted drug delivery. Primary astrocytes were cultured in vitro to construct CIRI cell model. It was found that Man@Dex could improve the activity of injured astrocytes. Man@Dex could exert antioxidant activity by inhibiting the reactive oxygen species (ROS) production of astrocytes, thus inhibiting the cytotoxicity induced by hypoxia and reoxygenation. Man@Dex could improve the ATP level and mitochondrial membrane potential (MMP) to protect mitochondrial function of damaged astrocytes. The CIRI rat model was constructed and confirmed by hematoxylin and eosin (HE), Triphenyl-2H-tetrazolium chloride (TTC) staining and nerve defect score. It indicated that Man@Dex could alleviate CIRI and improve MMP, which was beneficial to the recovery of brain injury in rats. This research provides a new theoretical basis and target for the development of brain-targeted nano-drugs of CIRI.
Collapse
Affiliation(s)
- Shusheng Ge
- Department of Anesthesoilogy, The First Affiliated Hospital of Hainan Medical University, No. 31 Longhua Road, Haikou, Hainan Province 570102, China
| | - Liwei Zhang
- Department of Neurology, Daqing Oilfield General Hospital, No. 9 Zhongkang Street, Sartu District, Daqing, Heilongjiang Province 163001, China
| | - Xiaoguang Cui
- Department of Anesthesoilogy, The First Affiliated Hospital of Hainan Medical University, No. 31 Longhua Road, Haikou, Hainan Province 570102, China
| | - Yuan Li
- Department of Anesthesoilogy, The First Affiliated Hospital of Hainan Medical University, No. 31 Longhua Road, Haikou, Hainan Province 570102, China.
| |
Collapse
|
5
|
Miao HH, Liu Q, Wang N, Liu YP, Chen C, Wang HB, Huang H, Wu WF, Lin JT, Qiu YK, Zhang CW, Zhou CH, Wu YQ. The Effect of SIRT3/Ac-SOD2 Mediated Oxidative Stress and HCN1 Channel Activity on Anesthesia/Surgery Induced Anxiety-Like Behavior in Mice. Front Med (Lausanne) 2022; 9:783931. [PMID: 35372451 PMCID: PMC8965289 DOI: 10.3389/fmed.2022.783931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Anxiety disorders are the most common psychiatric diseases, and perioperative factors often increase the incidence of anxiety. However, the mechanism and treatment for perioperative anxiety, especially anesthesia/surgery-induced postoperative anxiety, are largely unknown. Sirtuin 3 (SIRT3) which located in the mitochondria is the NAD-dependent deacetylase protein. SIRT3 mediated oxidative stress is associated with several neuropsychiatric diseases. In addition, hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) channel is also reported involved in anxiety symptoms. The purpose was to assess the role of SIRT3 on postoperative anxiety like behavior in C57/BL6 mice. We found that SIRT3 level reduced and HCN1 expression level increased in mice medial prefrontal cortex (mPFC) as well as anxiety like behavior postoperatively. In interventional research, SIRT3 adeno-associated virus vector or control vector was injected into the mPFC brain region. Enzyme-linked immunosorbent assay, immunofluorescence staining, and western blotting were employed to detect oxidative stress reactions and HCN1 channel activity. SIRT3 overexpression attenuated postoperative anxiety in mice. Superoxide dismutase 2 (SOD2) acetylation levels, SOD2 oxidative stress activity, mitochondrial membrane potential levels, and HCN1 channels were also inhibited by SIRT3 overexpression. Furthermore, the HCN1 channel inhibitor ZD7288 significantly protected against anesthesia/surgery-induced anxiety, but without SIRT3/ac-SOD2 expression or oxidative stress changes. Our results suggest that SIRT3 may achieve antianxiety effects through regulation of SOD2 acetylation-mediated oxidative stress and HCN1 channels in the mPFC, further strengthening the therapeutic potential of targeting SIRT3 for anesthesia/surgery-induced anxiety-like behavior.
Collapse
Affiliation(s)
- Hui-Hui Miao
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Ning Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yan-Ping Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Chen Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Hai-Bi Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Hui Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Wei-Feng Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jia-Tao Lin
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yong-Kang Qiu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Chuan-Wu Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
6
|
Abstract
Mitochondria have been recognized as key organelles in cardiac physiology and are potential targets for clinical interventions to improve cardiac function. Mitochondrial dysfunction has been accepted as a major contributor to the development of heart failure. The main function of mitochondria is to meet the high energy demands of the heart by oxidative metabolism. Ionic homeostasis in mitochondria directly regulates oxidative metabolism, and any disruption in ionic homeostasis causes mitochondrial dysfunction and eventually contractile failure. The mitochondrial ionic homeostasis is closely coupled with inner mitochondrial membrane potential. To regulate and maintain ionic homeostasis, mitochondrial membranes are equipped with ion transporting proteins. Ion transport mechanisms involving several different ion channels and transporters are highly efficient and dynamic, thus helping to maintain the ionic homeostasis of ions as well as their salts present in the mitochondrial matrix. In recent years, several novel proteins have been identified on the mitochondrial membranes and these proteins are actively being pursued in research for roles in the organ as well as organelle physiology. In this article, the role of mitochondrial ion channels in cardiac function is reviewed. In recent times, the major focus of the mitochondrial ion channel field is to establish molecular identities as well as assigning specific functions to them. Given the diversity of mitochondrial ion channels and their unique roles in cardiac function, they present novel and viable therapeutic targets for cardiac diseases.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Physiology and Cell Biology, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
7
|
Benzoni P, Bertoli G, Giannetti F, Piantoni C, Milanesi R, Pecchiari M, Barbuti A, Baruscotti M, Bucchi A. The funny current: Even funnier than 40 years ago. Uncanonical expression and roles of HCN/f channels all over the body. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:189-204. [PMID: 34400215 DOI: 10.1016/j.pbiomolbio.2021.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/25/2021] [Accepted: 08/09/2021] [Indexed: 12/25/2022]
Abstract
Discovered some 40 years ago, the If current has since been known as the "pacemaker" current due to its role in the initiation and modulation of the heartbeat and of neuronal excitability. But this is not all, the funny current keeps entertaining the researchers; indeed, several data discovering novel and uncanonical roles of f/HCN channel are quickly accumulating. In the present review, we provide an overview of the expression and cellular functions of HCN/f channels in a variety of systems/organs, and particularly in sour taste transduction, hormones secretion, activation of astrocytes and microglia, inhibition of osteoclastogenesis, renal ammonium excretion, and peristalsis in the gastrointestinal and urine systems. We also analyzed the role of HCN channels in sustaining cellular respiration in mitochondria and their participation to mitophagy under specific conditions. The relevance of HCN currents in undifferentiated cells, and specifically in the control of stem cell cycle and in bioelectrical signals driving left/right asymmetry during zygote development, is also considered. Finally, we present novel data concerning the expression of HCN mRNA in human leukocytes. We can thus conclude that the emerging evidence presented in this review clearly points to an increasing interest and importance of the "funny" current that goes beyond its role in cardiac sinoatrial and neuronal excitability regulation.
Collapse
Affiliation(s)
- Patrizia Benzoni
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy
| | - Giorgia Bertoli
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy
| | - Federica Giannetti
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy
| | - Chiara Piantoni
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy; Present Address: Institute of Neurophysiology, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Raffaella Milanesi
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy; Present Address: Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via Dell'Università 6, 26900, Lodi, Italy
| | - Matteo Pecchiari
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via L. Mangiagalli 32, 20133, Milan, Italy
| | - Andrea Barbuti
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy
| | - Mirko Baruscotti
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy
| | - Annalisa Bucchi
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
8
|
Kravenska Y, Checchetto V, Szabo I. Routes for Potassium Ions across Mitochondrial Membranes: A Biophysical Point of View with Special Focus on the ATP-Sensitive K + Channel. Biomolecules 2021; 11:1172. [PMID: 34439838 PMCID: PMC8393992 DOI: 10.3390/biom11081172] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/18/2022] Open
Abstract
Potassium ions can cross both the outer and inner mitochondrial membranes by means of multiple routes. A few potassium-permeable ion channels exist in the outer membrane, while in the inner membrane, a multitude of different potassium-selective and potassium-permeable channels mediate K+ uptake into energized mitochondria. In contrast, potassium is exported from the matrix thanks to an H+/K+ exchanger whose molecular identity is still debated. Among the K+ channels of the inner mitochondrial membrane, the most widely studied is the ATP-dependent potassium channel, whose pharmacological activation protects cells against ischemic damage and neuronal injury. In this review, we briefly summarize and compare the different hypotheses regarding the molecular identity of this patho-physiologically relevant channel, taking into account the electrophysiological characteristics of the proposed components. In addition, we discuss the characteristics of the other channels sharing localization to both the plasma membrane and mitochondria.
Collapse
Affiliation(s)
| | | | - Ildiko Szabo
- Department of Biology, University of Padova, 35131 Padova, Italy; (Y.K.); (V.C.)
| |
Collapse
|
9
|
Kulawiak B, Bednarczyk P, Szewczyk A. Multidimensional Regulation of Cardiac Mitochondrial Potassium Channels. Cells 2021; 10:1554. [PMID: 34205420 PMCID: PMC8235349 DOI: 10.3390/cells10061554] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria play a fundamental role in the energetics of cardiac cells. Moreover, mitochondria are involved in cardiac ischemia/reperfusion injury by opening the mitochondrial permeability transition pore which is the major cause of cell death. The preservation of mitochondrial function is an essential component of the cardioprotective mechanism. The involvement of mitochondrial K+ transport in this complex phenomenon seems to be well established. Several mitochondrial K+ channels in the inner mitochondrial membrane, such as ATP-sensitive, voltage-regulated, calcium-activated and Na+-activated channels, have been discovered. This obliges us to ask the following question: why is the simple potassium ion influx process carried out by several different mitochondrial potassium channels? In this review, we summarize the current knowledge of both the properties of mitochondrial potassium channels in cardiac mitochondria and the current understanding of their multidimensional functional role. We also critically summarize the pharmacological modulation of these proteins within the context of cardiac ischemia/reperfusion injury and cardioprotection.
Collapse
Affiliation(s)
- Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland;
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland;
| |
Collapse
|
10
|
Checchetto V, Leanza L, De Stefani D, Rizzuto R, Gulbins E, Szabo I. Mitochondrial K + channels and their implications for disease mechanisms. Pharmacol Ther 2021; 227:107874. [PMID: 33930454 DOI: 10.1016/j.pharmthera.2021.107874] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The field of mitochondrial ion channels underwent a rapid development during the last decade, thanks to the molecular identification of some of the nuclear-encoded organelle channels and to advances in strategies allowing specific pharmacological targeting of these proteins. Thereby, genetic tools and specific drugs aided definition of the relevance of several mitochondrial channels both in physiological as well as pathological conditions. Unfortunately, in the case of mitochondrial K+ channels, efforts of genetic manipulation provided only limited results, due to their dual localization to mitochondria and to plasma membrane in most cases. Although the impact of mitochondrial K+ channels on human diseases is still far from being genuinely understood, pre-clinical data strongly argue for their substantial role in the context of several pathologies, including cardiovascular and neurodegenerative diseases as well as cancer. Importantly, these channels are druggable targets, and their in-depth investigation could thus pave the way to the development of innovative small molecules with huge therapeutic potential. In the present review we summarize the available experimental evidence that mechanistically link mitochondrial potassium channels to the above pathologies and underline the possibility of exploiting them for therapy.
Collapse
Affiliation(s)
| | - Luigi Leanza
- Department of Biology, University of Padova, Italy
| | | | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Italy
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Germany
| | - Ildiko Szabo
- Department of Biology, University of Padova, Italy; CNR Institute of Neurosciences, Italy.
| |
Collapse
|
11
|
Wrzosek A, Augustynek B, Żochowska M, Szewczyk A. Mitochondrial Potassium Channels as Druggable Targets. Biomolecules 2020; 10:E1200. [PMID: 32824877 PMCID: PMC7466137 DOI: 10.3390/biom10081200] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial potassium channels have been described as important factors in cell pro-life and death phenomena. The activation of mitochondrial potassium channels, such as ATP-regulated or calcium-activated large conductance potassium channels, may have cytoprotective effects in cardiac or neuronal tissue. It has also been shown that inhibition of the mitochondrial Kv1.3 channel may lead to cancer cell death. Hence, in this paper, we examine the concept of the druggability of mitochondrial potassium channels. To what extent are mitochondrial potassium channels an important, novel, and promising drug target in various organs and tissues? The druggability of mitochondrial potassium channels will be discussed within the context of channel molecular identity, the specificity of potassium channel openers and inhibitors, and the unique regulatory properties of mitochondrial potassium channels. Future prospects of the druggability concept of mitochondrial potassium channels will be evaluated in this paper.
Collapse
Affiliation(s)
| | | | | | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (B.A.); (M.Ż.)
| |
Collapse
|
12
|
Rivinius R, Helmschrott M, Rahm AK, Darche FF, Thomas D, Bruckner T, Doesch AO, Katus HA, Ehlermann P. Five-year results of heart rate control with ivabradine or metoprolol succinate in patients after heart transplantation. Clin Res Cardiol 2020; 111:141-153. [PMID: 32572551 PMCID: PMC8816306 DOI: 10.1007/s00392-020-01692-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/17/2020] [Indexed: 11/28/2022]
Abstract
Background Cardiac graft denervation causes inadequate sinus tachycardia in patients after heart transplantation (HTX) which is associated with reduced survival. This study investigated the 5-year results of heart rate control with ivabradine or metoprolol succinate in patients after HTX. Methods This registry study analyzed 104 patients receiving either ivabradine (n = 50) or metoprolol succinate (n = 54) within 5 years after HTX. Analysis included patient characteristics, medication, echocardiographic features, cardiac catheterization data, cardiac biomarkers, heart rates, and post-transplant survival including causes of death. Results Demographics and post-transplant medication revealed no significant differences except for ivabradine and metoprolol succinate use. At 5-year follow-up, patients with ivabradine had a significantly lower heart rate (73.3 bpm) compared to baseline (88.6 bpm; P < 0.01) and to metoprolol succinate (80.4 bpm; P < 0.01), a reduced left ventricular mass (154.8 g) compared to baseline (179.5 g; P < 0.01) and to metoprolol succinate (177.3 g; P < 0.01), a lower left ventricular end-diastolic pressure (LVEDP; 12.0 mmHg) compared to baseline (15.5 mmHg; P < 0.01) and to metoprolol succinate (17.1 mmHg; P < 0.01), and a reduced NT-proBNP level (525.4 pg/ml) compared to baseline (3826.3 pg/ml; P < 0.01) and to metoprolol succinate (1038.9 pg/ml; P < 0.01). Five-year post-transplant survival was significantly better in patients with ivabradine (90.0%) versus metoprolol succinate (68.5%; P < 0.01). Conclusion Patients receiving ivabradine showed a superior heart rate reduction and a better left ventricular diastolic function along with an improved 5-year survival after HTX.
Collapse
Affiliation(s)
- Rasmus Rivinius
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany. .,Heidelberg Center for Heart Rhythm Disorders (HCR), Heidelberg University Hospital, Heidelberg, Germany. .,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Matthias Helmschrott
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Ann-Kathrin Rahm
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,Heidelberg Center for Heart Rhythm Disorders (HCR), Heidelberg University Hospital, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Fabrice F Darche
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,Heidelberg Center for Heart Rhythm Disorders (HCR), Heidelberg University Hospital, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,Heidelberg Center for Heart Rhythm Disorders (HCR), Heidelberg University Hospital, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Tom Bruckner
- Institute for Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Andreas O Doesch
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,Department of Pneumology and Oncology, Asklepios Hospital, Bad Salzungen, Germany
| | - Hugo A Katus
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,Heidelberg Center for Heart Rhythm Disorders (HCR), Heidelberg University Hospital, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Philipp Ehlermann
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
13
|
Signaling pathways targeting mitochondrial potassium channels. Int J Biochem Cell Biol 2020; 125:105792. [PMID: 32574707 DOI: 10.1016/j.biocel.2020.105792] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
In this review, we describe key signaling pathways regulating potassium channels present in the inner mitochondrial membrane. The signaling cascades covered here include phosphorylation, redox reactions, modulation by calcium ions and nucleotides. The following types of potassium channels have been identified in the inner mitochondrial membrane of various tissues: ATP-sensitive, Ca2+-activated, voltage-gated and two-pore domain potassium channels. The direct roles of these channels involve regulation of mitochondrial respiration, membrane potential and synthesis of reactive oxygen species (ROS). Changes in channel activity lead to diverse pro-life and pro-death responses in different cell types. Hence, characterizing the signaling pathways regulating mitochondrial potassium channels will facilitate understanding the physiological role of these proteins. Additionally, we describe in this paper certain regulatory mechanisms, which are unique to mitochondrial potassium channels.
Collapse
|