1
|
Hong C, Li X, Zhang K, Huang Q, Li B, Xin H, Hu B, Meng F, Zhu X, Tang D, Hu C, Tao C, Li J, Cao Y, Wang H, Deng B, Wang S. Novel perspectives on autophagy-oxidative stress-inflammation axis in the orchestration of adipogenesis. Front Endocrinol (Lausanne) 2024; 15:1404697. [PMID: 38982993 PMCID: PMC11232368 DOI: 10.3389/fendo.2024.1404697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/30/2024] [Indexed: 07/11/2024] Open
Abstract
Adipose tissue, an indispensable organ, fulfils the pivotal role of energy storage and metabolism and is instrumental in maintaining the dynamic equilibrium of energy and health of the organism. Adipocyte hypertrophy and adipocyte hyperplasia (adipogenesis) are the two primary mechanisms of fat deposition. Mature adipocytes are obtained by differentiating mesenchymal stem cells into preadipocytes and redifferentiation. However, the mechanisms orchestrating adipogenesis remain unclear. Autophagy, an alternative cell death pathway that sustains intracellular energy homeostasis through the degradation of cellular components, is implicated in regulating adipogenesis. Furthermore, adipose tissue functions as an endocrine organ, producing various cytokines, and certain inflammatory factors, in turn, modulate autophagy and adipogenesis. Additionally, autophagy influences intracellular redox homeostasis by regulating reactive oxygen species, which play pivotal roles in adipogenesis. There is a growing interest in exploring the involvement of autophagy, inflammation, and oxidative stress in adipogenesis. The present manuscript reviews the impact of autophagy, oxidative stress, and inflammation on the regulation of adipogenesis and, for the first time, discusses their interactions during adipogenesis. An integrated analysis of the role of autophagy, inflammation and oxidative stress will contribute to elucidating the mechanisms of adipogenesis and expediting the exploration of molecular targets for treating obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Chun Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xinming Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kunli Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Livestock Disease Prevention Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Qiuyan Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Baohong Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Haiyun Xin
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Bin Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Fanming Meng
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiangxing Zhu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Dongsheng Tang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Chuanhuo Hu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, Nanning, China
| | - Chenyu Tao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Jianhao Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yang Cao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
| | - Hai Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health- Hong Kong University (GIBH-HKU) Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Bo Deng
- Division of Nephrology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sutian Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
2
|
Long Q, Xiang M, Xiao L, Wang J, Guan X, Liu J, Liao C. The Biological Significance of AFF4: Promoting Transcription Elongation, Osteogenic Differentiation and Tumor Progression. Comb Chem High Throughput Screen 2024; 27:1403-1412. [PMID: 37815186 DOI: 10.2174/0113862073241079230920082056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/23/2023] [Accepted: 07/27/2023] [Indexed: 10/11/2023]
Abstract
As a member of the AF4/FMR2 (AFF) family, AFF4 is a scaffold protein in the superelongation complex (SEC). In this mini-view, we discuss the role of AFF4 as a transcription elongation factor that mediates HIV activation and replication and stem cell osteogenic differentiation. AFF4 also promotes the progression of head and neck squamous cell carcinoma, leukemia, breast cancer, bladder cancer and other malignant tumors. The biological function of AFF4 is largely achieved through SEC assembly, regulates SRY-box transcription factor 2 (SOX2), MYC, estrogen receptor alpha (ESR1), inhibitor of differentiation 1 (ID1), c-Jun and noncanonical nuclear factor-κB (NF-κB) transcription and combines with fusion in sarcoma (FUS), unique regulatory cyclins (CycT1), or mixed lineage leukemia (MLL). We explore the prospects of using AFF4 as a therapeutic in Acquired immunodeficiency syndrome (AIDS) and malignant tumors and its potential as a stemness regulator.
Collapse
Affiliation(s)
- Qian Long
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| | - Mingli Xiang
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| | - Linlin Xiao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| | - Jiajia Wang
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| | - Xiaoyan Guan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| | - Jianguo Liu
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| | - Chengcheng Liao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| |
Collapse
|
3
|
Chen Y, Li Q, Liu Y, Chen X, Jiang S, Lin W, Zhang Y, Liu R, Shao B, Chen C, Yuan Q, Zhou C. AFF4 regulates cellular adipogenic differentiation via targeting autophagy. PLoS Genet 2022; 18:e1010425. [PMID: 36149892 PMCID: PMC9534390 DOI: 10.1371/journal.pgen.1010425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/05/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Transcriptional elongation is a universal and critical step during gene expression. The super elongation complex (SEC) regulates the rapid transcriptional induction by mobilizing paused RNA polymerase II (Pol II). Dysregulation of SEC is closely associated with human diseases. However, the physiological role of SEC during development and homeostasis remains largely unexplored. Here we studied the function of SEC in adipogenesis by manipulating an essential scaffold protein AF4/FMR2 family member 4 (AFF4), which assembles and stabilizes SEC. Knockdown of AFF4 in human mesenchymal stem cells (hMSCs) and mouse 3T3-L1 preadipocytes inhibits cellular adipogenic differentiation. Overexpression of AFF4 enhances adipogenesis and ectopic adipose tissue formation. We further generate Fabp4-cre driven adipose-specific Aff4 knockout mice and find that AFF4 deficiency impedes adipocyte development and white fat depot formation. Mechanistically, we discover AFF4 regulates autophagy during adipogenesis. AFF4 directly binds to autophagy-related protein ATG5 and ATG16L1, and promotes their transcription. Depleting ATG5 or ATG16L1 abrogates adipogenesis in AFF4-overepressing cells, while overexpression of ATG5 and ATG16L1 rescues the impaired adipogenesis in Aff4-knockout cells. Collectively, our results unveil the functional importance of AFF4 in regulating autophagy and adipogenic differentiation, which broaden our understanding of the transcriptional regulation of adipogenesis. Obesity is a major health problem jeopardizing millions of individuals worldwide. From a pathological perspective, obesity occurs in the process of white adipose tissue expanding its mass through the enlargement of adipocyte size or advanced differentiation of adipocyte precursors to mature adipocytes. Studies have documented the dysregulated adipocyte metabolism of adipose tissue and associated disorders. However, our understanding of adipocyte development in which mesenchymal stem cells (MSCs) commit their fate and preadipocytes undergo differentiation and maturation is scarce. Here, we identify the super elongation complex (SEC) scaffold protein AFF4 as an essential regulator of adipogenesis. We reveal that AFF4 promotes adipocyte formation by regulating the cellular autophagic process. AFF4 directly regulates the transcription of the autophagy-related protein ATG5 and ATG16L1, which are essential for autophagosome formation. This finding further elucidates the physiological role of SEC during tissue development, besides its recognized role in cancer occurrence.
Collapse
Affiliation(s)
- Yaqian Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuting Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuelan Chen
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuning Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chong Chen
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail: ;
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail: ;
| |
Collapse
|
4
|
Liu Y, Chen Y, Wang Y, Jiang S, Lin W, Wu Y, Li Q, Guo Y, Liu W, Yuan Q. DNA demethylase ALKBH1 promotes adipogenic differentiation via regulation of HIF-1 signaling. J Biol Chem 2021; 298:101499. [PMID: 34922943 PMCID: PMC8760519 DOI: 10.1016/j.jbc.2021.101499] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 02/05/2023] Open
Abstract
DNA 6-adenine methylation (6mA), as a novel adenine modification existing in eukaryotes, shows essential functions in embryogenesis and mitochondrial transcriptions. ALKBH1 is a demethylase of 6mA and plays critical roles in osteogenesis, tumorigenesis, and adaptation to stress. However, the integrated biological functions of ALKBH1 still require further exploration. Here, we demonstrate that knockdown of ALKBH1 inhibits adipogenic differentiation in both human mesenchymal stem cells (hMSCs) and 3T3-L1 preadipocytes, while overexpression of ALKBH1 leads to increased adipogenesis. Using a combination of RNA-seq and N6-mA-DNA-IP-seq analyses, we identify hypoxia-inducible factor-1 (HIF-1) signaling as a crucial downstream target of ALKBH1 activity. Depletion of ALKBH1 leads to hypermethylation of both HIF-1α and its downstream target GYS1. Simultaneous overexpression of HIF-1α and GYS1 restores the adipogenic commitment of ALKBH1-deficient cells. Taken together, our data indicate that ALKBH1 is indispensable for adipogenic differentiation, revealing a novel epigenetic mechanism that regulates adipogenesis.
Collapse
Affiliation(s)
- Yuting Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Yaqian Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Yuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Shuang Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Yunshu Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Qiwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Yuchen Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Weiqing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China.
| |
Collapse
|
5
|
The m 6A Methylation-Regulated AFF4 Promotes Self-Renewal of Bladder Cancer Stem Cells. Stem Cells Int 2020; 2020:8849218. [PMID: 32676121 PMCID: PMC7352121 DOI: 10.1155/2020/8849218] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
The dynamic N6-methyladenosine (m6A) modification of mRNA plays a role in regulating gene expression and determining cell fate. However, the functions of m6A mRNA modification in bladder cancer stem cells (BCSCs) have not been described. Here, we show that global RNA m6A abundance and the expression of m6A-forming enzyme METTL3 are higher in BCSCs than those in non-CSCs of bladder cancer (BCa) cells. The depletion of the METTL3 inhibited the self-renewal of BCSCs, as evidenced by decreased ALDH activity and sphere-forming ability. Mechanistically, METTL3 regulates the m6A modification and thereby the expression of AF4/FMR2 family member 4 (AFF4), knockdown of which phenocopies the METTL3 ablation and diminishes the tumor-initiating capability of BCSCs in vivo. AFF4 binds to the promoter regions and sustains the transcription of SOX2 and MYC which have critical biological functions in BCSCs. Collectively, our results demonstrate the critical roles of m6A modification in self-renewal and tumorigenicity of BCSCs through a novel signaling axis of METTL3-AFF4-SOX2/MYC.
Collapse
|