1
|
Kim SG, Kim SJ, Duong TV, Cho Y, Park B, Kadam US, Park HS, Hong JC. Autocrine Motility Factor and Its Peptide Derivative Inhibit Triple-Negative Breast Cancer by Regulating Wound Repair, Survival, and Drug Efflux. Int J Mol Sci 2024; 25:11714. [PMID: 39519266 PMCID: PMC11546756 DOI: 10.3390/ijms252111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) presents a significant challenge in oncology due to its aggressive nature and limited targeted therapeutic options. This study explores the potential of autocrine motility factor (AMF) and an AMF-derived peptide as novel treatments for TNBC. AMF, primarily secreted by neoplastic cells, plays a crucial role in cancer cell motility, metastasis, and proliferation. The research demonstrates that AMF and its derived peptide inhibit TNBC cell proliferation by modulating cellular migration, redox homeostasis, apoptotic pathways, and drug efflux mechanisms. Dose-dependent antiproliferative effects were observed across three TNBC cell lines, with higher concentrations impairing cellular migration. Mechanistic studies revealed decreased glucose-6-phosphate dehydrogenase expression and elevated reactive oxygen species production, suggesting redox imbalance as a primary mediator of apoptosis. Combination studies with conventional therapeutics showed near-complete eradication of resistant TNBC cells. The observed reduction in p53 levels and increased intranuclear doxorubicin accumulation highlight the AMF/AMF peptide's potential as multidrug resistance modulators. This study underscores the promise of using AMF/AMF peptide as a novel therapeutic approach for TNBC, addressing current treatment limitations and warranting further investigation.
Collapse
Affiliation(s)
- Se Gie Kim
- Department of Cosmetic Science, Kyungsung University, Busan 48434, Republic of Korea
| | - Seok Joong Kim
- Department of Food and Nutrition, College of Natural and Information Science, Dongduk Women’s University, Seoul 02758, Republic of Korea
| | - Thanh Van Duong
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yuhan Cho
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.C.); (U.S.K.)
| | - Bogeun Park
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.C.); (U.S.K.)
| | - Ulhas Sopanrao Kadam
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.C.); (U.S.K.)
| | - Hee Sung Park
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.C.); (U.S.K.)
| | - Jong Chan Hong
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.C.); (U.S.K.)
| |
Collapse
|
2
|
Zhang Y, Wang X, Chen G, Lu Y, Chen Q. Autocrine motility factor receptor promotes the malignancy of glioblastoma by regulating cell migration and invasion. Neurol Res 2024; 46:89-97. [PMID: 37703903 DOI: 10.1080/01616412.2023.2257463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/30/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVE One of the important causes of death in cancer patients is malignant metastasis, invasion, and metastasis of tumor cells. Metastasis is also the most basic physiological characteristics and pathogenesis of various tumors. Previously published studies have suggested that autocrine motor factor receptor (AMFR) is the key regulator of tumor cell migration and invasion. Meanwhile, AMFR is highly expressed in esophageal tumors, gastrointestinal tumors, and bladder cancer, and it is also involved in its pathogenesis. However, the role of AMFR in glioblastoma has not been reported. METHODS In order to study the role of AMFR in the cell migration and invasion of glioblastoma, AMFR was silenced using siRNA and overexpressed using cDNA. Immunoblotting analysis and real-time quantitative polymerase chain reaction (PCR) were employed to assess the expression of AMFR. We conducted wound healing assay, cell migration assay, and tumorsphere formation assay to detect the invasion and metastatic ability of glioblastoma. RESULTS This study found that the level of AMFR expression was significantly correlated with the malignant degree of glioma tissue in clinic samples. AMFR silencing decreased cell migration and invasion of LN229. Overexpression of AMFR significantly increased cell migration and invasion of U251. CONCLUSION This study suggests that AMFR could be used as a therapeutic strategy for the clinical treatment of glioblastoma.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Endocrinology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuping Wang
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanghui Chen
- Department of Pharmacy, Renmin Hospital, Wuhan University, Wuhan, China
| | - Yajing Lu
- Institute of geriatric medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Chen
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Gallardo-Pérez JC, Trejo-Solís MC, Robledo-Cadena DX, López-Marure R, Agredano-Moreno LT, Jimenez-García LF, Sánchez-Lozada LG. Erythrose inhibits the progression to invasiveness and reverts drug resistance of cancer stem cells of glioblastoma. Med Oncol 2023; 40:104. [PMID: 36821013 DOI: 10.1007/s12032-023-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
Glioblastoma (GBM) is the most frequent brain cancer and more lethal than other cancers. Characteristics of this cancer are its high drug resistance, high recurrence rate and invasiveness. Invasiveness in GBM is related to overexpression of matrix metalloproteinases (MMPs) which are mediated by wnt/β-catenin and induced by the activation of signaling pathways extracellularly activated by the cytokine neuroleukin (NLK) in cancer stem cells (CSC). Therefore, in this work we evaluated the effect of the tetrose saccharide, erythrose (Ery), a NLK inhibitor of invasiveness and drug sensitization in glioblastoma stem cells (GSC). GSC were obtained from parental U373 cell line by a CSC phenotype enrichment protocol based on microenvironmental stress conditions such as hypoxia, hipoglycemia, drug exposition and serum starvation. Enriched fraction of GSC overexpressed the typical markers of brain CSC: low CD133+ and high CD44; in addition, epithelial to mesenchyme transition (EMT) markers and MMPs were increased several times in GSC vs. U373 correlating with higher invasiveness, elongated and tubular mitochondrion and temozolomide (TMZ) resistance. IC50 of Ery was found at nM concentration and at 24 h induced a severe diminution of EMT markers, MMPs and invasiveness in GSC. Furthermore, the phosphorylation pattern of NLK after Ery exposition also was affected. In addition, when Ery was administered to GSC at subIC50, it was capable of reverting TMZ resistance at concentrations innocuous to non-tumor cancer cells. Moreover, Ery added daily induced the death of all GSC. Those findings indicated that the phytodrug Ery could be used as adjuvant therapy in GBM.
Collapse
Affiliation(s)
- Juan Carlos Gallardo-Pérez
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología, "Ignacio Chávez", Juan Badiano No. 1. Col Sección XVI, Tlalpan, Mexico City, Mexico.
| | - María Cristina Trejo-Solís
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | | | - Rebeca López-Marure
- Departamento de Fisiología, Instituto Nacional de Cardiología, Mexico City, Mexico
| | | | | | - Laura Gabriela Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología, "Ignacio Chávez", Juan Badiano No. 1. Col Sección XVI, Tlalpan, Mexico City, Mexico
| |
Collapse
|
4
|
Li X, Ma S, Gao T, Mai Y, Song Z, Yang J. The main battlefield of mRNA vaccine – Tumor immune microenvironment. Int Immunopharmacol 2022; 113:109367. [DOI: 10.1016/j.intimp.2022.109367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/03/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
5
|
Li J, Fu X, Zhang D, Guo D, Xu S, Wei J, Xie J, Zhou X. Co-culture with osteoblasts up-regulates glycolysis of chondrocytes through MAPK/HIF-1 pathway. Tissue Cell 2022; 78:101892. [DOI: 10.1016/j.tice.2022.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/04/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
|
6
|
Jeoung NH, Jo AL, Park HS. The effect of autocrine motility factor alone and in combination with methyl jasmonate on liver cancer cell growth. Biosci Biotechnol Biochem 2021; 85:1711-1715. [PMID: 33988672 DOI: 10.1093/bbb/zbab087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/10/2021] [Indexed: 11/14/2022]
Abstract
Neoplastic cells secrete autocrine motility factor (AMF) to stimulate the motility of cancer cells. In this study, AMF secreted from HT-29 colorectal cancer cells selectively suppressed liver cancer cells by downregulating pAKT and β-catenin. In addition, HT-29 AMF significantly augmented the activity of methyl jasmonate against liver cancer cells and is a promising alternative for liver cancer therapy.
Collapse
Affiliation(s)
- Nam Ho Jeoung
- Department of Pharmaceutical Engineering, Catholic University of Daegu, Gyeongsan, Korea
| | - Ae Lim Jo
- Department of Pharmaceutical Engineering, Catholic University of Daegu, Gyeongsan, Korea
| | - Hee Sung Park
- Department of Biomedical Science, Catholic University of Daegu, Gyeongsan, Korea
| |
Collapse
|
7
|
Synergistic effects of autocrine motility factor and methyl jasmonate on human breast cancer cells. Biochem Biophys Res Commun 2021; 558:22-28. [PMID: 33894674 DOI: 10.1016/j.bbrc.2021.04.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 11/22/2022]
Abstract
Autocrine motility factor (AMF) stimulates the motility of cancer cells via an autocrine route and has been implicated in tumor progression and metastasis. Overexpression of AMF is correlated with the aggressive nature of breast cancer and is negatively associated with clinical outcomes. In contrast, AMF also has the ability to suppress cancer cells. In this study, AMFs from different cancer cells were demonstrated to have suppressive activity against MCF-7 and MDA-MB-231 breast cancer cells. In a growth and colony formation assay, AMF from AsPC-1 pancreatic cancer cells (ASPC-1:AMF) was determined to be more suppressive compared to other AMFs. It was also demonstrated that AsPC-1:AMF could arrest breast cancer cells at the G0/G1 cell cycle phase. Quantified by Western blot analysis, AsPC-1:AMF lowered levels of the AMF receptor (AMFR) and G-protein-coupled estrogen receptor (GPER), concomitantly regulating the activation of the AKT and ERK signaling pathways. JAK/STAT activation was also decreased. These results were found in estrogen receptor (ER)-positive MCF-7 cells but not in triple-negative MDA-MB-231 cells, suggesting that AsPC-1:AMF could work through multiple pathways led to apoptosis. More importantly, AsPC-1:AMF and methyl jasmonate (MJ) cooperatively and synergistically acted against breast cancer cells. Thus, AMF alone or along with MJ may be a promising breast cancer treatment option.
Collapse
|
8
|
Secreted phosphoglucose isomerase is a novel biomarker of nonalcoholic fatty liver in mice and humans. Biochem Biophys Res Commun 2020; 529:1101-1105. [PMID: 32819571 PMCID: PMC7469084 DOI: 10.1016/j.bbrc.2020.06.126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
The current gold standard for diagnosis of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) is through a liver biopsy, and there is an urgent need to develop non-invasive methods for early detection. We previously demonstrated metabolic remodeling in the mouse fatty liver, which is marked by increased hepatic expression and activities of phosphoglucose isomerase (PGI) and several other glycolytic enzymes. Since PGI is actively transported out of the cell, acting as a multifunctional cytokine referred to as autocrine motility factor (AMF), we explored the possibility that PGI secreted from the fatty liver may be targeted for early detection of the silent disease. We report here that mice with NASH exhibited significantly elevated serum PGI enzyme activities compared to normal control (P < 0.005). We further confirmed the finding using serum/plasma samples (n = 73) collected from a cohort of NASH patients who were diagnosed according to Kleiner’s criteria, showing a normal mean PGI of 19.5 ± 8.8 IU/L and patient mean PGI of 105.6 ± 79.9 IU/L (P < 0.005). In addition, elevated blood PGI in NASH patients coincided with increased blood L-lactate. Cell culture experiments were then conducted to delineate the PGI-lactate axis, which revealed that treatment of HepG2 cells with recombinant PGI protein stimulated glycolysis and lactate output, suggesting that the disease-induced PGI likely contributed to the increased lactate in NASH patients. Taken together, the preclinical and clinical data validate secreted PGI as a useful biomarker of the fatty liver that can be easily screened at the point of care.
Collapse
|