1
|
Konstantynowicz-Nowicka K, Sztolsztener K, Chabowski A, Harasim-Symbor E. Cannabidiol and sphingolipid metabolism - an unexplored link offering a novel therapeutic approach against high-fat diet-induced hepatic insulin resistance. J Nutr Biochem 2025:109865. [PMID: 39986634 DOI: 10.1016/j.jnutbio.2025.109865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/29/2024] [Accepted: 02/10/2025] [Indexed: 02/24/2025]
Abstract
Despite extensive research on insulin resistance, which is associated with type 2 diabetes and obesity, there remains a lack of effective and safe methods to treat it. Thus, we hypothesized that cannabidiol (CBD), which influences lipid accumulation and inflammatory response, may interact with sphingolipid metabolism and insulin signaling. To investigate the effects of CBD, male Wistar rats were fed a standard rodent chow or high-fat diet for 7 weeks to induce IR and were treated with CBD or its vehicle administered intraperitoneally for the last two weeks of the experiment. High-Performance Liquid Chromatography (HPLC) was used to assess sphingolipid concentration in the liver, while multiplex assay and western blotting were used to investigate the level or expression of proteins in the insulin signaling pathway and sphingolipid metabolism. Our results revealed that CBD prevented ceramide deposition in the liver of high-fat-fed rats through inhibition of the ceramide de novo synthesis pathway. Moreover, the accumulation of sphingosine-1-phosphate was notably increased with impaired catabolic pathway. Observed changes in the sphingolipid pathway coincided with improved insulin signaling after CBD treatment in animals fed a high-fat diet. Considering the presented evidence, CBD exerted a beneficial effect on insulin sensitivity in a state of lipid overload through the modification of sphingolipid deposition. Our study reveals the importance of broadening IR treatment methods, especially with natural substances that lack serious side effects such as CBD.
Collapse
Affiliation(s)
| | | | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland.
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
2
|
Huang Y, Du J, Li D, He W, Liu Z, Liu L, Yang X, Cheng X, Chen R, Yang Y. LASS2 suppresses metastasis in multiple cancers by regulating the ferroptosis signalling pathway through interaction with TFRC. Cancer Cell Int 2024; 24:87. [PMID: 38419028 PMCID: PMC10900749 DOI: 10.1186/s12935-024-03275-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND As a key enzyme in ceramide synthesis, longevity assurance homologue 2 (LASS2) has been indicated to act as a tumour suppressor in a variety of cancers. Ferroptosis is involved in a variety of tumour processes; however, the role of LASS2 in regulating ferroptosis has yet to be explored. This article explores the potential underlying mechanisms involved. METHODS Bioinformatics tools and immunohistochemical staining were used to evaluate LASS2 expression, and the results were analysed in relation to overall survival and clinical association in multiple cancers. Coimmunoprecipitation-coupled liquid chromatography-mass spectrometry (co-IP LC-MS) was performed to identify potential LASS2-interacting proteins in thyroid, breast, and liver cancer cell lines. Transcriptomics, proteomics and metabolomics analyses of multiple cancer cell types were performed using MS or LC-MS to further explore the underlying mechanisms involved. Among these tumour cells, the common LASS2 interaction partner transferrin receptor (TFRC) was analysed by protein-protein docking and validated by coimmunoprecipitation western blot, immunofluorescence, and proximity ligation assays. Then, we performed experiments in which tumour cells were treated with Fer-1 or erastin or left untreated, with or without inducing LASS2 overexpression, and assessed the molecular biological and cellular functions by corresponding analyses. RESULTS Low LASS2 expression is correlated with adverse clinical characteristic and poor prognosis in patients with thyroid cancer, breast cancer or HCC. Multiomics analyses revealed significant changes in the ferroptosis signalling pathway, iron ion transport and iron homeostasis. Our in vitro experiments revealed that LASS2 overexpression regulated ferroptosis status in these tumour cells by affecting iron homeostasis, which in turn inhibited tumour migration, invasion and EMT. In addition, LASS2 overexpression reversed the changes in tumour cell metastasis induced by either Fer-1 or erastin. Mechanistically, LASS2 interacts directly with TFRC to regulate iron homeostasis in these tumour cells. CONCLUSIONS In summary, our study reveals for the first time that LASS2 can inhibit tumour cell metastasis by interacting with TFRC to regulate iron metabolism and influence ferroptosis status in thyroid, breast, and liver cancer cells, these results suggest potential universal therapeutic targets for the treatment of these cancers.
Collapse
Affiliation(s)
- Yunfei Huang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Jie Du
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Dan Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Department of General Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Wei He
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Zhouheng Liu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Li Liu
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xiaoli Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xiaoming Cheng
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Rui Chen
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| | - Yan Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- School of Forensic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
3
|
Zhao Q, He W, Liu Z, Huang L, Yang X, Liu Y, Chen R, Min X, Yang Y. LASS2 enhances p53 protein stability and nuclear import to suppress liver cancer progression through interaction with MDM2/MDMX. Cell Death Discov 2023; 9:414. [PMID: 37963859 PMCID: PMC10646090 DOI: 10.1038/s41420-023-01709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
LASS2 functions as a tumor suppressor in hepatocellular carcinoma (HCC), the most common type of primary liver cancer, but the underlying mechanism of its action remains largely unknown. Moreover, details on its role and the downstream mechanisms in Cholangiocarcinoma (CCA) and hepatoblastoma (HB), are rarely reported. Herein, LASS2 overexpression was found to significantly inhibit proliferation, migration, invasion and induce apoptosis in hepatoma cells with wild-type (HB cell line HepG2) and mutated p53 (HCC cell line HCCLM3 and CCA cell line HuCCT1). Gene set enrichment analysis determined the enrichment of the differentially expressed genes caused by LASS2 in the p53 signaling pathway. Moreover, the low expression of LASS2 in HCC and CCA tumor tissues was correlated with the advanced tumor-node-metastasis (TNM) stage, and the protein expression of LASS2 positively correlated with acetylated p53 (Lys373) protein levels. At least to some extent, LASS2 exerts its tumor-suppressive effects in a p53-dependent manner, in which LASS2 interacts with MDM2/MDMX and causes dual inhibition to disrupt p53 degradation by MDM2/MDMX. In addition, LASS2 induces p53 phosphorylation at ser15 and acetylation at lys373 to promote translocation from cytoplasm to nucleus. These findings provide new insights into the LASS2-induced tumor suppression mechanism in liver cancer and suggest LASS2 could serve as a potential therapeutic target for liver cancer.
Collapse
Affiliation(s)
- Qingqing Zhao
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei He
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhouheng Liu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Liangliang Huang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
| | - Xiaoli Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yong Liu
- School of Forensic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Center of Forensic Expertise, Affiliated hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Rui Chen
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xun Min
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China.
| | - Yan Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China.
- School of Forensic Medicine, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
4
|
Chen M, Wang K, Han Y, Yan S, Yuan H, Liu Q, Li L, Li N, Zhu H, Lu D, Wang K, Liu F, Luo D, Zhang Y, Jiang J, Li D, Zhang L, Ji H, Zhou H, Chen Y, Qin J, Gao D. Identification of XAF1 as an endogenous AKT inhibitor. Cell Rep 2023; 42:112690. [PMID: 37384528 DOI: 10.1016/j.celrep.2023.112690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/06/2023] [Accepted: 06/08/2023] [Indexed: 07/01/2023] Open
Abstract
AKT kinase is a key regulator in cell metabolism and survival, and its activation is strictly modulated. Herein, we identify XAF1 (XIAP-associated factor) as a direct interacting protein of AKT1, which strongly binds the N-terminal region of AKT1 to block its K63-linked poly-ubiquitination and subsequent activation. Consistently, Xaf1 knockout causes AKT activation in mouse muscle and fat tissues and reduces body weight gain and insulin resistance induced by high-fat diet. Pathologically, XAF1 expression is low and anti-correlated with the phosphorylated p-T308-AKT signal in prostate cancer samples, and Xaf1 knockout stimulates the p-T308-AKT signal to accelerate spontaneous prostate tumorigenesis in mice with Pten heterozygous loss. And ectopic expression of wild-type XAF1, but not the cancer-derived P277L mutant, inhibits orthotopic tumorigenesis. We further identify Forkhead box O 1 (FOXO1) as a transcriptional regulator of XAF1, thus forming a negative feedback loop between AKT1 and XAF1. These results reveal an important intrinsic regulatory mechanism of AKT signaling.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kangjunjie Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ying Han
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Shukun Yan
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, National Center for Protein Science Shanghai, 333 Haike Road, Shanghai 201210, China
| | - Huairui Yuan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qiuli Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Long Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Hongwen Zhu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Dayun Lu
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Kaihua Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China
| | - Fen Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China
| | - Dakui Luo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yuxue Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, China
| | - Hu Zhou
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yong Chen
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, National Center for Protein Science Shanghai, 333 Haike Road, Shanghai 201210, China; School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, China.
| | - Jun Qin
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Daming Gao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
5
|
Song C, Li W, Wang Z. The Landscape of Liver Chromatin Accessibility and Conserved Non-coding Elements in Larimichthys crocea, Nibea albiflora, and Lateolabrax maculatus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:763-775. [PMID: 35895229 DOI: 10.1007/s10126-022-10142-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Large yellow croaker (Larimichthys crocea), yellow drum (Nibea albiflora), and Chinese seabass (Lateolabrax maculatus) are important economic marine fishes in China. The conserved non-coding elements (CNEs) in the liver tissues of the three kinds of fish are directly or indirectly involved in the regulation of gene expression and affect liver functions. However, the fishes' CNEs and even chromatin accessibility landscape have not been effectively investigated. Hence, this study established the landscapes of the fishes' genome-wide chromatin accessibility and CNEs by detecting regions of the open chromatin in their livers using an assay for transposase-accessible chromatin by high-throughput sequencing (ATAC-seq) and comparative genomics approach. The results showed that Smad1, Sp1, and Foxl1 transcription factor binding motifs were considerably enriched in the chromatin accessibility landscape in the liver of the three species, and the three transcription factors (TFs) had a wide range of common targets. The hypothetical gene set was targeted by one, two, or all three TFs, which was much higher than would be expected for an accidental outcome. The gene sets near the CNEs were mainly enriched through processes such as a macromolecule metabolic process and ribonucleoprotein complex biogenesis. The active CNEs were found in the promoter regions of genes such as ap1g1, hax1, and ndufs2. And 5 CNEs were predicted to be highly conserved active enhancers. These results demonstrated that Smad1, Sp1, and Foxl1 might be related to the liver function in the three fishes. In addition, we found a series of ATAC-seq-labeled CNEs located in the gene promoter regions, and highly conserved H3k27ac + -labeled CNEs located in the liver function genes. The highly conserved nature of these regulatory elements suggests that they play important roles in the liver in fish. This study mined the landscape of chromatin accessibility and CNEs of three important economic fishes to fill the knowledge gaps in this field. Moreover, the work provides useful data for the industrial application and theoretical research of these three fish species.
Collapse
Affiliation(s)
- Chaowei Song
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Zhiyong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|