1
|
Tian B, Pang Y, Gao Y, Meng Q, Xin L, Sun C, Tang X, Wang Y, Li Z, Lin H, Wang L. A pan-cancer analysis of the oncogenic role of Golgi transport 1B in human tumors. J Transl Int Med 2023; 11:433-448. [PMID: 38130634 PMCID: PMC10732491 DOI: 10.2478/jtim-2023-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Background Owing to the aggressiveness and treatment-refractory nature of cancer, ideal candidates for early diagnosis and treatment are needed. Golgi transport 1B (GOLT1B) has been associated with cellular malignant behaviors and immune responses in colorectal and lung cancer, but a systematic pan-cancer analysis on GOLT1B has not been conducted. Methods The expression status and clinical association of GOLT1B in The Cancer Genome Atlas (TCGA) were analyzed. Genetic and methylation alterations in GOLT1B were explored. The relationship between GOLT1B and immune cell infiltration was also investigated. Genes related to GOLT1B expression were selected and analyzed. Results GOLT1B was highly expressed in most tumors, and there was a positive correlation between GOLT1B expression and clinical pathological parameters. High expression levels of GOLT1B have been associated with poor prognosis of most cancers. Copy number amplification was the primary type of GOLT1B genetic alterations, which was related to the prognosis of pan-cancer cases. There were different levels of GOLT1B promoter methylation across cancer types. The methylation level of the probe cg07371838 and cg25816357 was closely associated with prognosis in diverse cancers. There was also a positive correlation between GOLT1B genetic alterations and CD4+ T lymphocytes, especially the Th2 subset, as well as between GOLT1B expression and the estimated infiltration value of cancer-associated fibroblasts. Serine/threonine kinase receptor-associated protein (STRAP), integrator complex subunit 13 (INTS13), and ethanolamine kinase 1 (ETNK1) were the most relevant genes for GOLT1B expression, and their interactions with GOLT1B were involved in regulating the transforming growth factor (TGF)-β receptor signaling pathway and epithelial-mesenchymal transition (EMT). Conclusions This pan-cancer analysis provided a comprehensive understanding of the oncogenic role of GOLT1B, highlighting a potential mechanism whereby GOLT1B influences the tumor microenvironment, as well as cancer immunotherapy.
Collapse
Affiliation(s)
- Bo Tian
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Yanan Pang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
- Shanghai Institute of Pancreatic Diseases, Shanghai200433, China
| | - Ye Gao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Qianqian Meng
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Lei Xin
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Chang Sun
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Xin Tang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Yilin Wang
- Georgetown Preparatory School, North Bethesda20852, MD, USA
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Han Lin
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Luowei Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai200433, China
| |
Collapse
|
2
|
Ramos-Pittol JM, Fernandes-Freitas I, Milona A, Manchishi SM, Rainbow K, Lam BYH, Tadross JA, Beucher A, Colledge WH, Cebola I, Murphy KG, Miguel-Aliaga I, Yeo GSH, Dhillo WS, Owen BM. Dax1 modulates ERα-dependent hypothalamic estrogen sensing in female mice. Nat Commun 2023; 14:3076. [PMID: 37248237 PMCID: PMC10227040 DOI: 10.1038/s41467-023-38618-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Coupling the release of pituitary hormones to the developmental stage of the oocyte is essential for female fertility. It requires estrogen to restrain kisspeptin (KISS1)-neuron pulsatility in the arcuate hypothalamic nucleus, while also exerting a surge-like effect on KISS1-neuron activity in the AVPV hypothalamic nucleus. However, a mechanistic basis for this region-specific effect has remained elusive. Our genomic analysis in female mice demonstrate that some processes, such as restraint of KISS1-neuron activity in the arcuate nucleus, may be explained by region-specific estrogen receptor alpha (ERα) DNA binding at gene regulatory regions. Furthermore, we find that the Kiss1-locus is uniquely regulated in these hypothalamic nuclei, and that the nuclear receptor co-repressor NR0B1 (DAX1) restrains its transcription specifically in the arcuate nucleus. These studies provide mechanistic insight into how ERα may control the KISS1-neuron, and Kiss1 gene expression, to couple gonadotropin release to the developmental stage of the oocyte.
Collapse
Affiliation(s)
- Jose M Ramos-Pittol
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, 6020, Austria
| | | | - Alexandra Milona
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Stephen M Manchishi
- Department of Physiology, Development, and Neuroscience, Cambridge University, Cambridge, United Kingdom
| | - Kara Rainbow
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Cambridge University, Cambridge, United Kingdom
| | - Brian Y H Lam
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Cambridge University, Cambridge, United Kingdom
| | - John A Tadross
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Cambridge University, Cambridge, United Kingdom
- Department of Histopathology and East Midlands & East of England Genomic Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Anthony Beucher
- Section of Genetics and Genomics, Imperial College London, London, United Kingdom
| | - William H Colledge
- Department of Physiology, Development, and Neuroscience, Cambridge University, Cambridge, United Kingdom
| | - Inês Cebola
- Section of Genetics and Genomics, Imperial College London, London, United Kingdom
| | - Kevin G Murphy
- Section of Investigative Medicine, Imperial College London, London, United Kingdom
| | - Irene Miguel-Aliaga
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
- MRC London Institute of Medical Sciences, London, United Kingdom
| | - Giles S H Yeo
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Cambridge University, Cambridge, United Kingdom
| | - Waljit S Dhillo
- Section of Investigative Medicine, Imperial College London, London, United Kingdom.
| | - Bryn M Owen
- Section of Investigative Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
3
|
Zi H, Chen L, Ruan Q. Lidocaine represses the malignant behavior of lung carcinoma cells via the circ_PDZD8/miR-516b-5p/GOLT1A axis. Histol Histopathol 2022; 37:461-474. [PMID: 35060113 DOI: 10.14670/hh-18-423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lung carcinoma is the most prevalent malignancy in adults. Lidocaine (Lido) has been confirmed to exert an anti-tumor role in many human cancers. However, the role and underlying mechanism of Lido in lung carcinoma remain poorly understood. Cell proliferation ability, migration, invasion, and apoptosis were measured by Colony formation, 5-ethynyl-2'-deoxyuridine (EdU), Cell Counting Kit-8 (CCK-8), transwell, and flow cytometry assays. Circ_PDZD8, microRNA-516b-5p (miR-516b-5p), and Golgi transport 1A (GOLT1A) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Protein levels of proliferating cell nuclear antigen (PCNA) and GOLT1A were examined by western blot assay. The binding relationship between miR-516b-5p and circ_PDZD8 or GOLT1A was predicted by circular RNA Interactome or Starbase 3.0 and then verified by a dual-luciferase reporter assay. The biological roles of circ_PDZD8 and Lido on lung carcinoma cell growth were examined by the xenograft tumor model in vivo. Lido suppressed proliferation, migration, invasion, and induced apoptosis in lung carcinoma cells. Circ_PDZD8 and GOLT1A were increased, miR-516b-5p was decreased in lung carcinoma tissues and cell lines. Their expression presented the opposite trend in Lido-triggered lung carcinoma cells. Circ_PDZD8 might overturn the repression of Lido on cell growth ability and metastasis in this tumor. Mechanically, circ_PDZD8 might regulate GOLT1A expression by sponging miR-516b-5p. Circ_PDZD8 weakened the anti-lung carcinoma effect of Lido in vivo. Circ_PDZD8 might mitigate the inhibitory effect of Lido on tumor cell malignancy by modulating the miR-516b-5p/GOLT1A axis, providing a novel insight for lung carcinoma treatment.
Collapse
Affiliation(s)
- Huafen Zi
- Department of Anesthesiology, the First Affiliated Hospital of Chengdu Medical College, Sichuan, PR China
| | - Li Chen
- Department of Anesthesiology, the First Affiliated Hospital of Chengdu Medical College, Sichuan, PR China
| | - Qian Ruan
- Department of Anesthesiology, the First Affiliated Hospital of Chengdu Medical College, Sichuan, PR China.
| |
Collapse
|