1
|
Dohno C, Kimura M, Fujiwara Y, Nakatani K. Photoswitchable molecular glue for RNA: reversible photocontrol of structure and function of the ribozyme. Nucleic Acids Res 2023; 51:9533-9541. [PMID: 37615580 PMCID: PMC10570050 DOI: 10.1093/nar/gkad690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023] Open
Abstract
Single-stranded RNA folds into a variety of secondary and higher-order structures. Distributions and dynamics of multiple RNA conformations are responsible for the biological function of RNA. We here developed a photoswitchable molecular glue for RNA, which could reversibly control the association of two unpaired RNA regions in response to light stimuli. The photoswitchable molecular glue, NCTA, is an RNA-binding ligand possessing a photoisomerizable azobenzene moiety. Z-NCTA is an active ligand for the target RNA containing 5'-WGG-3'/5'-WGG-3' (W = U or A) site and stabilizes its hybridized state, while its isomer E-NCTA is not. Photoreversible isomerization of NCTA enabled control of the secondary and tertiary structure of the target RNA. The RNA-cleaving activity of hammerhead ribozyme, where appropriate RNA folding is necessary, could be reversibly regulated by photoirradiation in cells treated with NCTA, demonstrating precise photocontrol of RNA structure and function by the photoswitchable molecular glue.
Collapse
Affiliation(s)
- Chikara Dohno
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Maki Kimura
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yusuke Fujiwara
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
2
|
Li J, Wan L, Wang Y, Chen Y, Lee HK, Lam SL, Guo P. Solution Nuclear Magnetic Resonance Structures of ATTTT and ATTTC Pentanucleotide Repeats Associated with SCA37 and FAMEs. ACS Chem Neurosci 2023; 14:289-299. [PMID: 36580663 DOI: 10.1021/acschemneuro.2c00593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Expansions of ATTTT and ATTTC pentanucleotide repeats in the human genome are recently found to be associated with at least seven neurodegenerative diseases, including spinocerebellar ataxia type 37 (SCA37) and familial adult myoclonic epilepsy (FAME) types 1, 2, 3, 4, 6, and 7. The formation of non-B DNA structures during some biological processes is thought as a causative factor for repeat expansions. Yet, the structural basis for these pyrimidine-rich ATTTT and ATTTC repeat expansions remains elusive. In this study, we investigated the solution structures of ATTTT and ATTTC repeats using nuclear magnetic resonance spectroscopy. Here, we reveal that ATTTT and ATTTC repeats can form a highly compact minidumbbell structure at the 5'-end using their first two repeats. The high-resolution structure of two ATTTT repeats was determined, showing a regular TTTTA pentaloop and a quasi TTTT/A pentaloop. Furthermore, the minidumbbell structure could escape from proofreading by the Klenow fragment of DNA polymerase I when it was located at five or more base pairs away from the priming site, leading to a small-scale repeat expansion. Results of this work improve our understanding of ATTTT and ATTTC repeat expansions in SCA37 and FAMEs, and provide high-resolution structural information for rational drug design.
Collapse
Affiliation(s)
- Jinxia Li
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Liqi Wan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Yang Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yawen Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Hung Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Pei Guo
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
3
|
Jhan CR, Satange R, Wang SC, Zeng JY, Horng YC, Jin P, Neidle S, Hou MH. Targeting the ALS/FTD-associated A-DNA kink with anthracene-based metal complex causes DNA backbone straightening and groove contraction. Nucleic Acids Res 2021; 49:9526-9538. [PMID: 33836081 PMCID: PMC8450080 DOI: 10.1093/nar/gkab227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/16/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
The use of a small molecule compound to reduce toxic repeat RNA transcripts or their translated aberrant proteins to target repeat-expanded RNA/DNA with a G4C2 motif is a promising strategy to treat C9orf72-linked disorders. In this study, the crystal structures of DNA and RNA–DNA hybrid duplexes with the -GGGCCG- region as a G4C2 repeat motif were solved. Unusual groove widening and sharper bending of the G4C2 DNA duplex A-DNA conformation with B-form characteristics inside was observed. The G4C2 RNA–DNA hybrid duplex adopts a more typical rigid A form structure. Detailed structural analysis revealed that the G4C2 repeat motif of the DNA duplex exhibits a hydration shell and greater flexibility and serves as a ‘hot-spot’ for binding of the anthracene-based nickel complex, NiII(Chro)2 (Chro = Chromomycin A3). In addition to the original GGCC recognition site, NiII(Chro)2 has extended specificity and binds the flanked G:C base pairs of the GGCC core, resulting in minor groove contraction and straightening of the DNA backbone. We have also shown that Chro-metal complexes inhibit neuronal toxicity and suppresses locomotor deficits in a Drosophila model of C9orf72-associated ALS. The approach represents a new direction for drug discovery against ALS and FTD diseases by targeting G4C2 repeat motif DNA.
Collapse
Affiliation(s)
- Cyong-Ru Jhan
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
| | - Roshan Satange
- Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan.,Institute of Genomics and Bioinformatics; National Chung Hsing University, Taichung 402, Taiwan
| | - Shun-Ching Wang
- Institute of Genomics and Bioinformatics; National Chung Hsing University, Taichung 402, Taiwan
| | - Jing-Yi Zeng
- Institute of Genomics and Bioinformatics; National Chung Hsing University, Taichung 402, Taiwan
| | - Yih-Chern Horng
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stephen Neidle
- The School of Pharmacy, University College London, London, WC1N 1AX, United Kingdom
| | - Ming-Hon Hou
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan.,Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan.,Institute of Genomics and Bioinformatics; National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|