1
|
Sudarshan K, Yarlagadda S, Sengupta S. Recent Advances in the Synthesis of Diarylheptanoids. Chem Asian J 2024; 19:e202400380. [PMID: 38744677 DOI: 10.1002/asia.202400380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
In the quest for synthesizing biologically important natural products, medicinal chemists embark on an endless journey. This review focuses on the reports published towards the syntheses of diarylheptanoids, classifying them into linear, tetrahydropyran, diarylether, and biphenyl categories. The synthesis methods for each class from 2013 to 2023 are discussed, providing a comprehensive overview of the advancements in the field. Representative natural product examples are highlighted for each category. The review emphasizes the importance of diarylheptanoids in the realms of chemistry and medicine, showcasing their potential as valuable compounds for medicinal and synthetic chemists.
Collapse
Affiliation(s)
- Kasireddy Sudarshan
- Kasireddy Sudarshan, Suresh Yarlagadda, Sagnik Sengupta, Department of Chemistry, Institute for Drug Discovery, Purdue University, West Lafayette, IN-47907, USA
| | - Suresh Yarlagadda
- Kasireddy Sudarshan, Suresh Yarlagadda, Sagnik Sengupta, Department of Chemistry, Institute for Drug Discovery, Purdue University, West Lafayette, IN-47907, USA
| | - Sagnik Sengupta
- Kasireddy Sudarshan, Suresh Yarlagadda, Sagnik Sengupta, Department of Chemistry, Institute for Drug Discovery, Purdue University, West Lafayette, IN-47907, USA
| |
Collapse
|
2
|
Chen H, Guo Z, Sun Y, Dai X. The immunometabolic reprogramming of microglia in Alzheimer's disease. Neurochem Int 2023; 171:105614. [PMID: 37748710 DOI: 10.1016/j.neuint.2023.105614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder (NDD). In the central nervous system (CNS), immune cells like microglia could reprogram intracellular metabolism to alter or exert cellular immune functions in response to environmental stimuli. In AD, microglia could be activated and differentiated into pro-inflammatory or anti-inflammatory phenotypes, and these differences in cellular phenotypes resulted in variance in cellular energy metabolism. Considering the enormous energy requirement of microglia for immune functions, the changes in mitochondria-centered energy metabolism and substrates of microglia are crucial for the cellular regulation of immune responses. Here we reviewed the mechanisms of microglial metabolic reprogramming by analyzing their flexible metabolic patterns and changes that occurred in their metabolism during the development of AD. Further, we summarized the role of drugs in modulating immunometabolic reprogramming to prevent neuroinflammation, which may shed light on a new research direction for AD treatment.
Collapse
Affiliation(s)
- Hongli Chen
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
| | - Zichen Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
| | - Yaxuan Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
| | - Xueling Dai
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China.
| |
Collapse
|
3
|
Blasco Tavares Pereira Lopes F, Schlatzer D, Wang R, Li X, Feng E, Koyutürk M, Qi X, Chance MR. Temporal and Sex-Linked Protein Expression Dynamics in a Familial Model of Alzheimer's Disease. Mol Cell Proteomics 2022; 21:100280. [PMID: 35944844 PMCID: PMC9483563 DOI: 10.1016/j.mcpro.2022.100280] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Mouse models of Alzheimer's disease (AD) show progression through stages reflective of human pathology. Proteomics identification of temporal and sex-linked factors driving AD-related pathways can be used to dissect initiating and propagating events of AD stages to develop biomarkers or design interventions. In the present study, we conducted label-free proteome measurements of mouse hippocampus tissue with variables of time (3, 6, and 9 months), genetic background (5XFAD versus WT), and sex (equal males and females). These time points are associated with well-defined phenotypes with respect to the following: Aβ42 plaque deposition, memory deficits, and neuronal loss, allowing correlation of proteome-based molecular signatures with the mouse model stages. Our data show 5XFAD mice exhibit increases in known human AD biomarkers as amyloid-beta peptide, APOE, GFAP, and ITM2B are upregulated across all time points/stages. At the same time, 23 proteins are here newly associated with Alzheimer's pathology as they are also dysregulated in 5XFAD mice. At a pathways level, the 5XFAD-specific upregulated proteins are significantly enriched for DNA damage and stress-induced senescence at 3-month only, while at 6-month, the AD-specific proteome signature is altered and significantly enriched for membrane trafficking and vesicle-mediated transport protein annotations. By 9-month, AD-specific dysregulation is also characterized by significant neuroinflammation with innate immune system, platelet activation, and hyper-reactive astrocyte-related enrichments. Aside from these temporal changes, analysis of sex-linked differences in proteome signatures uncovered novel sex and AD-associated proteins. Pathway analysis revealed sex-linked differences in the 5XFAD model to be involved in the regulation of well-known human AD-related processes of amyloid fibril formation, wound healing, lysosome biogenesis, and DNA damage. Verification of the discovery results by Western blot and parallel reaction monitoring confirm the fundamental conclusions of the study and poise the 5XFAD model for further use as a molecular tool for understanding AD.
Collapse
Affiliation(s)
- Filipa Blasco Tavares Pereira Lopes
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Daniela Schlatzer
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rihua Wang
- Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Center for Mitochondrial Diseases, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xiaolin Li
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Emily Feng
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mehmet Koyutürk
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Computer and Data Sciences, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xin Qi
- Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Center for Mitochondrial Diseases, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark R Chance
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
4
|
Siesto G, Pietrafesa R, Infantino V, Thanh C, Pappalardo I, Romano P, Capece A. In Vitro Study of Probiotic, Antioxidant and Anti-Inflammatory Activities among Indigenous Saccharomyces cerevisiae Strains. Foods 2022; 11:1342. [PMID: 35564065 PMCID: PMC9105761 DOI: 10.3390/foods11091342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 12/02/2022] Open
Abstract
Nowadays, the interest toward products containing probiotics is growing due to their potential health benefits to the host and the research is focusing on search of new probiotic microorganisms. The present work was focused on the characterization of indigenous Saccharomyces cerevisiae strains, isolated from different food matrixes, with the goal to select strains with probiotic or health-beneficial potential. A preliminary screening performed on fifty S. cerevisiae indigenous strains, in comparison to a commercial probiotic strain, allowed to individuate the most suitable ones for potential probiotic aptitude. Fourteen selected strains were tested for survival ability in the gastrointestinal tract and finally, the strains characterized for the most important probiotic features were analyzed for health-beneficial traits, such as the content of glucan, antioxidant and potential anti-inflammatory activities. Three strains, 4LBI-3, LL-1, TA4-10, showing better attributes compared to the commercial probiotic S.cerevisiae var. boulardii strain, were characterized by interesting health-beneficial traits, such as high content of glucan, high antioxidant and potential anti-inflammatory activities. Our results suggest that some of the tested S. cerevisiae strains have potential as probiotics and candidate for different applications, such as dietary supplements, and starter for the production of functional foods or as probiotic to be used therapeutically.
Collapse
Affiliation(s)
- Gabriella Siesto
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (G.S.); (A.C.)
| | - Rocchina Pietrafesa
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (G.S.); (A.C.)
| | - Vittoria Infantino
- Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (V.I.); (I.P.)
| | - Channmuny Thanh
- Institute of Technology of Cambodia (ITC), Russian Federation Blvd, P.O. Box 86, Phnom Penh 12101, Cambodia;
| | - Ilaria Pappalardo
- Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (V.I.); (I.P.)
| | - Patrizia Romano
- Dipartimento di Economia, Universitas Mercatorum, 00186 Roma, Italy;
| | - Angela Capece
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (G.S.); (A.C.)
| |
Collapse
|
5
|
Laurita T, Pappalardo I, Chiummiento L, D'Orsi R, Funicello M, Santarsiero A, Marsico M, Infantino V, Todisco S, Lupattelli P. Synthesis of new methoxy derivatives of trans 2,3-diaryl-2,3-dihydrobenzofurans and evaluation of their anti-inflammatory activity. Bioorg Med Chem Lett 2021; 49:128264. [PMID: 34280408 DOI: 10.1016/j.bmcl.2021.128264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 01/03/2023]
Abstract
In the present study we synthesized new methoxy derivatives of trans 2,3-diaryl-2,3-dihydrobenzofurans, starting from suitable trans 2,3-diaryloxiranes, using regio- and stereoselective nucleophilic oxiranyl ring-opening reactions. The compounds were tested as anti-inflammatories in U937 cells. All compounds showed a significant role in inhibiting the NF-κB pathway and were able to restore normal ROS and NO level upon LPS activation. Moreover, regarding inhibition of ACLY, enantioenriched (50% ee) 7a50 showed more potency than the racemic counterpart 7arac, together with a higher reduction of prostaglandin E2 production, thus suggesting a stereoselective interaction in this pathway.
Collapse
Affiliation(s)
- T Laurita
- Department of Sciences, University of Basilicata, via dell'ateneo lucano 10, 85100 Potenza, Italy
| | - I Pappalardo
- Department of Sciences, University of Basilicata, via dell'ateneo lucano 10, 85100 Potenza, Italy
| | - L Chiummiento
- Department of Sciences, University of Basilicata, via dell'ateneo lucano 10, 85100 Potenza, Italy
| | - R D'Orsi
- Department of Sciences, University of Basilicata, via dell'ateneo lucano 10, 85100 Potenza, Italy
| | - M Funicello
- Department of Sciences, University of Basilicata, via dell'ateneo lucano 10, 85100 Potenza, Italy
| | - A Santarsiero
- Department of Sciences, University of Basilicata, via dell'ateneo lucano 10, 85100 Potenza, Italy
| | - M Marsico
- Department of Sciences, University of Basilicata, via dell'ateneo lucano 10, 85100 Potenza, Italy
| | - V Infantino
- Department of Sciences, University of Basilicata, via dell'ateneo lucano 10, 85100 Potenza, Italy
| | - S Todisco
- Department of Sciences, University of Basilicata, via dell'ateneo lucano 10, 85100 Potenza, Italy
| | - P Lupattelli
- Department of Sciences, University of Basilicata, via dell'ateneo lucano 10, 85100 Potenza, Italy.
| |
Collapse
|
6
|
Liu P, Gao Q, Guan L, Sheng W, Hu Y, Gao T, Jiang J, Xu Y, Qiao H, Xue X, Liu S, Li T. Atorvastatin Attenuates Isoflurane-Induced Activation of ROS-p38MAPK/ATF2 Pathway, Neuronal Degeneration, and Cognitive Impairment of the Aged Mice. Front Aging Neurosci 2021; 12:620946. [PMID: 33519423 PMCID: PMC7840608 DOI: 10.3389/fnagi.2020.620946] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022] Open
Abstract
Isoflurane, a widely used volatile anesthetic, induces neuronal apoptosis and memory impairments in various animal models. However, the potential mechanisms and effective pharmacologic agents are still not fully understood. The p38MAPK/ATF-2 pathway has been proved to regulate neuronal cell survival and inflammation. Besides, atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, exerts neuroprotective effects. Thus, this study aimed to explore the influence of atorvastatin on isoflurane-induced neurodegeneration and underlying mechanisms. Aged C57BL/6 mice (20 months old) were exposed to isoflurane (1.5%) anesthesia for 6 h. Atorvastatin (5, 10, or 20 mg/kg body weight) was administered to the mice for 7 days. Atorvastatin attenuated the isoflurane-induced generation of ROS and apoptosis. Western blotting revealed a decrease in cleaved caspase-9 and caspase-3 expression in line with ROS levels. Furthermore, atorvastatin ameliorated the isoflurane-induced activation of p38MAPK/ATF-2 signaling. In a cellular study, we proved that isoflurane could induce oxidative stress and inflammation by activating the p38MAPK/ATF-2 pathway in BV-2 microglia cells. In addition, SB203580, a selected p38MAPK inhibitor, inhibited the isoflurane-induced inflammation, oxidative stress, and apoptosis. The results implied that p38MAPK/ATF-2 was a potential target for the treatment of postoperative cognitive dysfunction.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Quansheng Gao
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Lei Guan
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Weixuan Sheng
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yanting Hu
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Teng Gao
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jingwen Jiang
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yongxing Xu
- Department of Nephrology, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Hui Qiao
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xinying Xue
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Sanhong Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianzuo Li
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Guo T, Zhou D, Yang Y, Zhang X, Chen G, Lin B, Sun Y, Ni H, Liu J, Hou Y, Li N. Bioactive sesquiterpene coumarins from the resin of Ferula sinkiangensis targeted on over-activation of microglia. Bioorg Chem 2020; 104:104338. [PMID: 33142410 DOI: 10.1016/j.bioorg.2020.104338] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/18/2020] [Accepted: 09/30/2020] [Indexed: 12/21/2022]
Abstract
Nine undescribed (1-4, 6-10) sesquiterpene coumarins, together with a new natural one (5) and ten known ones (11-20), were isolated from the low polarity fraction of the 95% ethanol extract of the resin of Ferula sinkiangensis. Their structures were elucidated based on the comprehensive analysis of HRESIMS, 1D and 2D NMR data. The absolute configurations were determined by comparison of experimental and calculated ECD spectra. All the identified SCs were evaluated for their anti-neuroinflammatory activities in LPS-induced BV-2 cells. Ferusingensine G (8) displayed a significant inhibitory effect on nitric oxide (NO) production with an IC50 value of 1.2 μM. The results suggested that natural SCs might be served as potential neuroinflammatory inhibitors.
Collapse
Affiliation(s)
- Tingting Guo
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, China
| | - Yanqiu Yang
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China
| | - Xueni Zhang
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Sun
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China
| | - Hui Ni
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China
| | - Jingyu Liu
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China
| | - Yue Hou
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, China.
| |
Collapse
|