1
|
Gao Q, Lai Y, He S, Wang Y, Zhang G, Zhu X, Zhuang S. Lysine acetyltransferase 5 contributes to diabetic retinopathy by modulating autophagy through epigenetically regulating autophagy-related gene 7. Cytojournal 2025; 22:22. [PMID: 40134575 PMCID: PMC11932963 DOI: 10.25259/cytojournal_187_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/30/2024] [Indexed: 03/27/2025] Open
Abstract
Objective Diabetic retinopathy (DR) is a prevalent and serious complication among individuals with diabetes, significantly compromising their visual acuity and overall quality of life. Lysine acetyltransferase 5 (KAT5), an essential catalytic subunit of the nucleosome acetyltransferase of the H4 complex, is implicated in the development of various diseases, including neurological disorders, breast cancer, and lung cancer. However, the function of KAT5 in DR remains poorly understood. This study aims to investigate the influence of KAT5 on autophagy (Atg) during DR. Material and Methods Experiments were conducted using streptozotocin (STZ)-treated rats to induce diabetes and observe changes in KAT5 expression and its effect on Atg. Retinal tissues and RF/6A cells were utilized to analyze the expression levels of various proteins and their involvement in Atg and apoptosis. KAT5 depletion and Atg7 knockdown were performed to further understand their roles in the process. Results The eyeballs of STZ-treated rats showed increased expression of KAT5. Depletion of KAT5 attenuated STZ-induced DR injury in rats. The retinal tissues of STZ-treated rats exhibited reduced expression of B-cell lymphoma-2 (Bcl-2) and increased levels of BCL-2-associated X protein and cleaved caspase 3, which could be reversed by KAT5 depletion. STZ treatment induced expression of Beclin-1 and microtubule-associated protein 1 light chain 3B in retinal tissues, and KAT5 knockdown blocked this effect. In monkey retinal choroidal endothelial ( RF/6A) cells, high glucose (HG) treatment decreased 5-ethynyl-2'-deoxyuridine-positivecells and increased terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells, which were reversed by KAT5 depletion. KAT5 depletion also attenuated HG-induced apoptosis and Atg in RF/6A cells. Mechanistically, KAT5 depletion reduced histone H3 lysine 27 acetylation and ribonucleic acid ( RNA) polymerase II enrichment on the Atg7 promoter, leading to a decrease in the messenger RNA ( mRNA) and protein expression of Atg7. Atg7 knockdown suppressed Atg in RF/6A cells under HG conditions and reversed the effect of KAT5 depletion on cell apoptosis and Atg. Conclusion The findings suggest that KAT5 contributes to DR by modulating Atg through epigenetic regulation of Atg7. KAT5 emerges as a valuable target for DR treatment, providing a fresh perspective on the disease's pathogenesis and laying the foundation for the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Qi Gao
- Department of Laboratory Clinical Laboratory, Ninth Hospital of Xi’an, Xi ’an, Shaanxi Province, China
| | - Yanjun Lai
- Department of Laboratory Clinical Laboratory, Ninth Hospital of Xi’an, Xi ’an, Shaanxi Province, China
| | - Shuai He
- Department of Laboratory Clinical Laboratory, Ninth Hospital of Xi’an, Xi ’an, Shaanxi Province, China
| | - Yanhua Wang
- Department of Laboratory Clinical Laboratory, Ninth Hospital of Xi’an, Xi ’an, Shaanxi Province, China
| | - Guochao Zhang
- Department of Laboratory Clinical Laboratory, Ninth Hospital of Xi’an, Xi ’an, Shaanxi Province, China
| | - Xinyu Zhu
- Department of Laboratory Clinical Laboratory, Ninth Hospital of Xi’an, Xi ’an, Shaanxi Province, China
| | - Shifang Zhuang
- Department of Laboratory Clinical Laboratory, Ninth Hospital of Xi’an, Xi ’an, Shaanxi Province, China
| |
Collapse
|
2
|
Yang Y, Liu Y, Tang H, Zhou Q, Li H, Song E. FTY720 Suppresses Pathogenic Retinal Müller Cell Activation and Chronic Progression by Inhibiting the mTOR/NF-κB Signaling Pathway and Regulating Autophagy. Curr Eye Res 2024; 49:862-871. [PMID: 38577836 DOI: 10.1080/02713683.2024.2337301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE FTY720 is an agonist of the Sphingosine-1-phosphate (S1P) receptor 1, 3, 4, and 5 and a functional antagonist of the S1P1 receptor; it can inhibit the activation of mTOR/NF-κB and has therapeutic potential in inflammatory disease. This study was designed to determine the role of the inflammatory process in diabetic retinopathy and investigate the effect of FTY720 on high glucose (HG)-induced rat retinal Müller cells (rMC-1 cells). METHODS In the present study, the role of FTY720 in inhibiting inflammation and its underlying mechanism were investigated. rMC-1 cells were treated without or with HG, FTY720, CQ, or RAP. Cell viability was examined by CCK-8 assay; cell activation was assessed by western blot analysis and IF staining; and cell migration was evaluated by a scratch wound healing assay. The expression of inflammation-associated proteins and autophagy-related proteins was evaluated by transmission electron microscopy, AO staining, MDC-labeled autophagic vacuoles, western blot analysis and ELISA. RESULTS Western blot analysis and IF staining showed that the level of the rMC-1 cell marker GFAP was decreased, while GS was increased in FTY720 groups compared to that in the HG group. The healing assay results showed that compared with HG treatment, FTY720 treatment significantly reduced cell migration. Western blot analysis, ELISA and IF staining showed that compared with HG, FTY720 reduced proinflammatory proteins by inhibiting the mechanistic target of the mTOR/NF-κB signaling pathway and regulating autophagy. CONCLUSIONS This study suggests that in an HG-induced rMC-1 cell model, FTY720 significantly inhibited the production of inflammatory cytokines by inhibiting mTOR/NF-κB signaling and regulating autophagy. These findings were associated with a decrease in rMC-1 cell injury, suggesting that FTY720 or related compounds may be valuable modulators of HG-induced retinal injury.
Collapse
Affiliation(s)
- Yanting Yang
- Department of Ophthalmology, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Ophthalmology, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, China
| | - Yan Liu
- Department of Ophthalmology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Huan Tang
- Department of Ophthalmology, Changzhou Municipal Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Qing Zhou
- Department of Ophthalmology, Changzhou Municipal Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Huanhuan Li
- Department of Ophthalmology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - E Song
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Liu F, Zhao L, Wu T, Yu W, Li J, Wang W, Huang C, Diao Z, Xu Y. Targeting autophagy with natural products as a potential therapeutic approach for diabetic microangiopathy. Front Pharmacol 2024; 15:1364616. [PMID: 38659578 PMCID: PMC11039818 DOI: 10.3389/fphar.2024.1364616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
As the quality of life improves, the incidence of diabetes mellitus and its microvascular complications (DMC) continues to increase, posing a threat to people's health and wellbeing. Given the limitations of existing treatment, there is an urgent need for novel approaches to prevent and treat DMC. Autophagy, a pivotal mechanism governing metabolic regulation in organisms, facilitates the removal of dysfunctional proteins and organelles, thereby sustaining cellular homeostasis and energy generation. Anomalous states in pancreatic β-cells, podocytes, Müller cells, cardiomyocytes, and Schwann cells in DMC are closely linked to autophagic dysregulation. Natural products have the property of being multi-targeted and can affect autophagy and hence DMC progression in terms of nutrient perception, oxidative stress, endoplasmic reticulum stress, inflammation, and apoptosis. This review consolidates recent advancements in understanding DMC pathogenesis via autophagy and proposes novel perspectives on treating DMC by either stimulating or inhibiting autophagy using natural products.
Collapse
Affiliation(s)
- Fengzhao Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lijuan Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenfei Yu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jixin Li
- Xi yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenru Wang
- Xi yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chengcheng Huang
- Department of Endocrinology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Zhihao Diao
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunsheng Xu
- Department of Endocrinology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Zhao X, Bie LY, Pang DR, Li X, Yang LF, Chen DD, Wang YR, Gao Y. The role of autophagy in the treatment of type II diabetes and its complications: a review. Front Endocrinol (Lausanne) 2023; 14:1228045. [PMID: 37810881 PMCID: PMC10551182 DOI: 10.3389/fendo.2023.1228045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
Type II diabetes mellitus (T2DM) is a chronic metabolic disease characterized by prolonged hyperglycemia and insulin resistance (IR). Its incidence is increasing annually, posing a significant threat to human life and health. Consequently, there is an urgent requirement to discover effective drugs and investigate the pathogenesis of T2DM. Autophagy plays a crucial role in maintaining normal islet structure. However, in a state of high glucose, autophagy is inhibited, resulting in impaired islet function, insulin resistance, and complications. Studies have shown that modulating autophagy through activation or inhibition can have a positive impact on the treatment of T2DM and its complications. However, it is important to note that the specific regulatory mechanisms vary depending on the target organ. This review explores the role of autophagy in the pathogenesis of T2DM, taking into account both genetic and external factors. It also provides a summary of reported chemical drugs and traditional Chinese medicine that target the autophagic pathway for the treatment of T2DM and its complications.
Collapse
Affiliation(s)
- Xuan Zhao
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lu-Yao Bie
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Dao-Ran Pang
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Long-Fei Yang
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dan-Dan Chen
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yue-Rui Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Gao
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
5
|
Yu H, Zhong H, Sun J, Li N, Chen J, Shen B, Huang P, Shen X, Huang S, Zhong Y. Molecular signaling from microglia impacts macroglia autophagy and neurons survival in glaucoma. iScience 2023; 26:106839. [PMID: 37250793 PMCID: PMC10213002 DOI: 10.1016/j.isci.2023.106839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/01/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Interactions between microglia and macroglia play important roles in the neurodegeneration of the central nervous system and so is the situation between microglia and Müller cells in retina neurodegenerations like glaucoma. This study focuses on the roles of microglia-derived osteopontin (OPN) in impacting Müller cells and retinal ganglion cells (RGCs). Rat model and cell pressurization culture were used to simulate glaucoma scenarios. Animals were differently treated with anti-OPN, suppressors of OPN receptors (Itgαvβ3/CD44) or microglia inhibitor minocycline, while isolated retinal Müller cells were accordingly treated with conditioned media from microglia culture pretreated with pressuring, overexpression-OPN, SiR-OPN, or minocycline. SB203580 was introduced to explore the role of p38 MAPK signaling pathway. Results revealed microglia may secret OPN to impact Müller cells' autophagy and RGCs survival via binding to Itgαvβ3/CD44 receptors in glaucomatous neurodegeneration with involvement of p38 MAPK pathway. This discovery may benefit understanding neurodegenerative disorders and exploring therapeutics.
Collapse
Affiliation(s)
- Huan Yu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai 200025, China
| | - Huimin Zhong
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jun Sun
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai 200025, China
| | - Na Li
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai 200025, China
| | - Junjue Chen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai 200025, China
| | - Bingqiao Shen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai 200025, China
| | - Ping Huang
- Department of Orthopaedics, Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai 200025, China
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai 200025, China
| | - Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai 200025, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai 200025, China
- Department of Ophthalmology, Zhoushan Branch of Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Zhoushan, China
| |
Collapse
|
6
|
Yang X, Huang Z, Xu M, Chen Y, Cao M, Yi G, Fu M. Autophagy in the retinal neurovascular unit: New perspectives into diabetic retinopathy. J Diabetes 2023; 15:382-396. [PMID: 36864557 PMCID: PMC10172025 DOI: 10.1111/1753-0407.13373] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/08/2023] [Accepted: 02/18/2023] [Indexed: 03/04/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the most prevalent retinal disorders worldwide, and it is a major cause of vision impairment in individuals of productive age. Research has demonstrated the significance of autophagy in DR, which is a critical intracellular homeostasis mechanism required for the destruction and recovery of cytoplasmic components. Autophagy maintains the physiological function of senescent and impaired organelles under stress situations, thereby regulating cell fate via various signals. As the retina's functional and fundamental unit, the retinal neurovascular unit (NVU) is critical in keeping the retinal environment's stability and supporting the needs of retinal metabolism. However, autophagy is essential for the normal NVU structure and function. We discuss the strong association between DR and autophagy in this review, as well as the many kinds of autophagy and its crucial physiological activities in the retina. By evaluating the pathological changes of retinal NVU in DR and the latest advancements in the molecular mechanisms of autophagy that may be involved in the pathophysiology of DR in NVU, we seek to propose new ideas and methods for the prevention and treatment of DR.
Collapse
Affiliation(s)
- Xiongyi Yang
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Zexin Huang
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Mei Xu
- The Second People's Hospital of Jingmen, Jingmen, Hubei, People's Republic of China
| | - Yanxia Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Mingzhe Cao
- Department of Ophthalmology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, P. R. China
| | - Guoguo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
7
|
Cheng Y, Fan H, Liu K, Liu J, Zou H, You Z. TFEB attenuates hyperglycemia-induced retinal capillary endothelial cells injury via autophagy regulation. Cell Biol Int 2023; 47:1092-1105. [PMID: 36807611 DOI: 10.1002/cbin.12002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/06/2023] [Accepted: 02/05/2023] [Indexed: 02/20/2023]
Abstract
Diabetic retinopathy is a common microvascular complication of diabetes mellitus. The maintenance of retinal capillary endothelial cell homeostasis requires a complete and unobtrusive flow of autophagy because it may help combat the inflammatory response, apoptosis, and oxidative stress damage of cells in diabetes mellitus. The transcription factor EB is a master regulator of autophagy and lysosomal biogenesis, but its role in diabetic retinopathy remains unknown. This study aimed to confirm the involvement of transcription factor EB in diabetic retinopathy and explore the role of transcription factor EB in hyperglycemia-linked endothelial injury in vitro. First, the expression levels, including the nuclear location of transcription factor EB and autophagy, were reduced in diabetic retinal tissues and high glucose-treated human retinal capillary endothelial cells. Subsequently, autophagy was mediated by transcription factor EB in vitro. Moreover, transcription factor EB overexpression reversed high glucose-induced autophagy inhibition and lysosomal dysfunction and protected human retinal capillary endothelial cells from inflammation, apoptosis, and oxidative stress damage caused by high glucose treatment. Additionally, under high-glucose stimulation, the autophagy inhibitor chloroquine attenuated transcription factor EB overexpression-mediated protection, and the autophagy agonist Torin1 rescued transcription factor EB knockdown-induced damage effects. Taken together, these results suggest that transcription factor EB is involved in the development of diabetic retinopathy. In addition, transcription factor EB protects human retinal capillary endothelial cells from high glucose-induced endothelial damage via autophagy.
Collapse
Affiliation(s)
- Yanhua Cheng
- Jiangxi Province Division of National Clinical Research Center for Ocular Diseases, Jiangxi Clinical Research Center for Ophthalmic Disease, Jiangxi Research Institute of Ophthalmology and Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Huimin Fan
- Jiangxi Province Division of National Clinical Research Center for Ocular Diseases, Jiangxi Clinical Research Center for Ophthalmic Disease, Jiangxi Research Institute of Ophthalmology and Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kangcheng Liu
- Jiangxi Province Division of National Clinical Research Center for Ocular Diseases, Jiangxi Clinical Research Center for Ophthalmic Disease, Jiangxi Research Institute of Ophthalmology and Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jingying Liu
- Jiangxi Province Division of National Clinical Research Center for Ocular Diseases, Jiangxi Clinical Research Center for Ophthalmic Disease, Jiangxi Research Institute of Ophthalmology and Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hua Zou
- Jiangxi Province Division of National Clinical Research Center for Ocular Diseases, Jiangxi Clinical Research Center for Ophthalmic Disease, Jiangxi Research Institute of Ophthalmology and Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhipeng You
- Jiangxi Province Division of National Clinical Research Center for Ocular Diseases, Jiangxi Clinical Research Center for Ophthalmic Disease, Jiangxi Research Institute of Ophthalmology and Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Wang Y, Yu H, Li J, Liu W, Yu S, Lv P, Zhao L, Wang X, Zuo Z, Liu X. Th22 cells induce Müller cell activation via the Act1/TRAF6 pathway in diabetic retinopathy. Cell Tissue Res 2022; 390:367-383. [PMID: 36201050 DOI: 10.1007/s00441-022-03689-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
T helper 22 (Th22) cells have been implicated in diabetic retinopathy (DR), but it remains unclear whether Th22 cells involve in the pathogenesis of DR. To investigate the role of Th22 cells in DR mice, the animal models were established by intraperitoneal injection of STZ and confirmed by fundus fluorescein angiography and retinal haematoxylin-eosin staining. IL-22BP was administered by intravitreal injection. IL-22 level was measured by ELISA in vivo and in vitro. The expression of IL-22Rα1 in the retina was assessed by immunofluorescence. We assessed GFAP, VEGF, ICAM-1, inflammatory-associated factors and the integrity of blood-retinal barrier in control, DR, IL-22BP, and sham group. Müller cells were co-cultured with Th22 cells, and the expression of the above proteins was measured by immunoblotting. Plasmid transfection technique was used to silence Act1 gene in Müller cells. Results in vivo and in vitro indicated that Th22 cells infiltrated into the DR retinal and IL-22Rα1 expressed in Müller cells. Th22 cells promoted Müller cells activation and inflammatory factor secretion by secreting IL-22 compared with high-glucose stimulation alone. In addition, IL-22BP ameliorated the pathological alterations of the retina in DR. Inhibition of the inflammatory signalling cascade through Act1 knockdown alleviated DR-like pathology. All in all, the results suggested that Th22 cells infiltrated into the retina and secreted IL-22 in DR, and then IL-22 binding with IL-22Rα1 activated the Act1/TRAF6 signal pathway, and promoted the inflammatory of Müller cells and involved the pathogenesis of DR.
Collapse
Affiliation(s)
- Yufei Wang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Hongdan Yu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Jing Li
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
| | - Wenqiang Liu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Shengxue Yu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Pan Lv
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Lipan Zhao
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Xiaobai Wang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Zhongfu Zuo
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China. .,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China. .,Department of Anatomy, Histology and Embryology, Postdoctoral Research Station, Guangxi Medical University, Nanning, China.
| | - Xuezheng Liu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China. .,Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
9
|
Mesenchymal Stem Cell Exosomal miR-146a Mediates the Regulation of the TLR4/MyD88/NF- κB Signaling Pathway in Inflammation due to Diabetic Retinopathy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3864863. [PMID: 35761836 PMCID: PMC9233583 DOI: 10.1155/2022/3864863] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/06/2022] [Accepted: 05/26/2022] [Indexed: 12/27/2022]
Abstract
Diabetic retinopathy (DR) is the main cause of vision loss in diabetic patients, which cannot be completely resolved by typical blood sugar control. Inflammation influences the development of DR, so reducing the inflammatory response in DR patients is crucial to the prevention of DR. Therefore, we explored the regulatory effect of bone marrow mesenchymal stem cell (BMSC) exosomes on inflammation in DR mice. In order to analyze the mechanism of action, we used BMSC exosomal miR-146a to treat microglias in DR mice to observe cellular changes and expression of inflammatory factors. It was found that BMSC exosomal miR-146a reduced the levels of proliferating cell antigen and B-cell lymphoma-2 in microglias of DR mice and increased Bcl-2-related X with cysteine aspartic protease-3. By analyzing the expression of inflammatory factors, we found that BMSC exosomal miR-146a reduced the levels of TNF-α, IL-1β, and IL-6, which suggested that miR-146a can alleviate inflammation in DR mice. Further exploration found that miR-146a reduced the activity of TLR4 and increased the activity of MyD88 and NF-κB. Furthermore, the overexpression of TLR4 reversed the effects of miR-146a on the proliferation, apoptosis, and inflammation of microglias. Our study demonstrated that BMSC exosomal miR-146a can regulate the inflammatory response of DR by mediating the TLR4/MyD88/NF-κB pathway, providing an experimental basis for the prevention and treatment of DR.
Collapse
|
10
|
Huang C, Qi P, Cui H, Lu Q, Gao X. CircFAT1 regulates retinal pigment epithelial cell pyroptosis and autophagy via mediating m6A reader protein YTHDF2 expression in diabetic retinopathy. Exp Eye Res 2022; 222:109152. [PMID: 35714699 DOI: 10.1016/j.exer.2022.109152] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/28/2022] [Accepted: 06/10/2022] [Indexed: 11/04/2022]
Abstract
Diabetic retinopathy (DR) is a serious blinding complication of diabetes. At present, the therapeutic intervention effect is limited. We aimed to investigate the circRNA expression profiles in retinal proliferative fibrovascular membranes of patients with DR and explore the effect of circFAT1 on pyroptosis and autophagy of high glucose (HG)-induced retinal pigment epithelial (RPE) cells and its molecualr mechanism. In this study, circRNA sequencing was performed to determine the expression profiles of circRNAs in DR patients. The expression of circFAT1 was measured by qRT-PCR. Cell counting kit-8, transmission electron microscope, western blot, immunofluorescence and enzyme-linked immunosorbent assay were conducted to explore the roles of HG and circFAT1 in RPE cell pyroptosis and autophagy. RNA pull down was used to determine the binding protein of circFAT1. Our data showed that HG significantly reduced the viability of RPE cells, inhibited cell autophagy and contributed to cell pyroptosis. In addition, a total of 189 differentially expressed circRNAs (DEcircRNAs) were identified between DR patients and non-DR patients, including 93 upregulated and 96 downregulated DEcircRNAs in the retinal proliferative fibrovascular membranes of DR patients. Pathway analysis showed that DEcircRNAs were mainly involved in MAPK signaling pathway, TGF-beta signaling pathway and adherens junction. Moreover, circFAT1 was significantly downregulated in retinal proliferative fibrovascular membranes of DR patients and HG-induced RPE cells. CircFAT1 overexpression remarkably enhanced the expression of LC3B, while reduced the expression of GSDMD in HG-induced RPE cells. RNA pull down combined with western blot analysis indicated that circFAT1 bound to m6A reader YTHDF2. YTHDF2 overexpression significantly increased the protein expression of LC3B in HG-induced RPE cells. In summary, circFAT1 promoted autophagy and inhibited pyroptosis of RPE cells induced by HG, and could combine with YTHDF2. This study provides new ideas for DR prevention and treatment.
Collapse
Affiliation(s)
- Chengchi Huang
- Department of Ophthalmology, The Fourth Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, China.
| | - Peng Qi
- Department of Ophthalmology, The Fourth Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, China
| | - Hao Cui
- Department of Ophthalmology, Harbin 242 Hospital, 3 WeiJian Road, PingFang District, Harbin, China
| | - Qun Lu
- Department of Ophthalmology, Sino-Singapore Eco-city Hospital of TianJin Medical University, Tianjin, 300467, China
| | - Xue Gao
- Department of Ophthalmology, The Fourth Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, China
| |
Collapse
|
11
|
Ji Q, Han J, Liu J, Lv H, Wang L, Dong Y, Shi L. LncRNA THRIL promotes high glucose-induced proliferation and migration of human retina microvascular endothelial cells through enhancing autophagy. Acta Diabetol 2022; 59:369-380. [PMID: 34718852 DOI: 10.1007/s00592-021-01813-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/08/2021] [Indexed: 10/19/2022]
Abstract
AIMS Diabetes retinopathy (DR) is associated with retinal microvascular system injury induced by high glucose (HG). This study aims to explore the role and mechanism of long non-coding RNA THRIL in regulating cell proliferation and migration of human retina microvascular endothelial cells (hRMECs) under HG condition. METHOD The gene and protein expression were detetced by RT-PCR and western blot, respectively. Cell proliferation and migration of hRMECs were examined using MTT assay and Transwell assay, respectively. The interaction between miR-125b-5p and THRIL or autophagy-related gene 4D (ATG4D) was analyzed using luciferase activity assay. RESULTS THRIL expression was induced by HG in hRMECs. THRIL overexpression enhanced the proliferation and migration of hRMECs induced by HG, whereas THRIL silencing yielded the opposite results. Furthermore, THRIL overexpression induced autophagy activation, and inhibition of autophagy by 3-methyladenine abrogated the promotory effects of THRIL overexpression on cell proliferation and migration of hRMECs. Mechanismly, THRIL inhibited miR-125b-5p to upregulate the expression of ATG4D (an important autophagy-related gene), thereby promoting autophagy. Moreover, miR-125b-5p overexpression or ATG4D silencing alone abolished the promoting effects of THRIL overexpression on HG-induced autophagy, proliferation and migration of hRMECs. CONCLUSIONS THRIL promotes HG-induced cell proliferation and migration of hRMECs through activation of autophagy via the miR-125b-5p/ATG4D axis. THRIL may serve as a potential therapeutic target for DR.
Collapse
Affiliation(s)
- Qingshan Ji
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230001, China
| | - Jing Han
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230001, China
| | - Jiajia Liu
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230001, China
| | - Huayi Lv
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230001, China
| | - Lisong Wang
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230001, China
| | - Yiran Dong
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230001, China
| | - Lei Shi
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230001, China.
| |
Collapse
|
12
|
Zhang XX, Ji YL, Zhu LP, Wang ZH, Fang CQ, Jiang CH, Pan K, Zhang J, Yin ZQ. Arjunolic acid from Cyclocarya paliurus ameliorates diabetic retinopathy through AMPK/mTOR/HO-1 regulated autophagy pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114772. [PMID: 34688801 DOI: 10.1016/j.jep.2021.114772] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/05/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cyclocarya paliurus (CP) is a traditional Chinese herb and possesses a variety of biological activities including anti-hyperglycemia, anti-hyperlipidemia, antioxidant and anti-inflammation. Arjunolic acid (AA) is an abundant and bioactive ingredient in CP that shows significant protection against many metabolic diseases such as diabetic complication. Diabetic retinopathy (DR) is a serious complication of diabetes and may lead to vision loss. However, the protective effects and underlying mechanisms of AA against DR is not still understood. AIM OF THE STUDY We aimed to investigate whether AA activates AMPK/mTOR/HO-1 regulated autophagy pathway to alleviate DR. MATERIALS AND METHODS In the study, the STZ-induced diabetic model of rats was established, and AA with 10 and 30 mg/kg dosages was given orally for ten weeks to investigate their effect on retinal injury of DR. H2O2-induced ARPE-19 cells were applied to evaluate anti-apoptosis and anti-oxidant effect of AA. RESULTS The results revealed that AA could prevent STZ-induced weight loss and increase the retinal thickness and nuclei counts. The level of HO-1 protein was upregulated both in vivo and in vitro. In addition, AA prevented retinal damage and cell apoptosis through the AMPK-mTOR-regulated autophagy pathway. Furthermore, anti-apoptosis capacity, as well as the expression of HO-1 and LC3 protein, were effectively locked by AMPK inhibitor dorsomorphin dihydrochloride (compound C). CONCLUSIONS This finding implies that AA may be a promising candidate drug by protecting retinal cells from STZ-induced oxidative stress and inflammation through the AMPK/mTOR/HO-1 regulated autophagy pathway.
Collapse
Affiliation(s)
- Xuan-Xuan Zhang
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 211198, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China; Department of Endocrinology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, PR China
| | - Ya-Li Ji
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 211198, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Li-Ping Zhu
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zi-Han Wang
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 211198, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Chang-Qian Fang
- Department of Endocrinology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, PR China
| | - Cui-Hua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Ke Pan
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China.
| | - Zhi-Qi Yin
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
13
|
Adornetto A, Gesualdo C, Laganà ML, Trotta MC, Rossi S, Russo R. Autophagy: A Novel Pharmacological Target in Diabetic Retinopathy. Front Pharmacol 2021; 12:695267. [PMID: 34234681 PMCID: PMC8256993 DOI: 10.3389/fphar.2021.695267] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/09/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy is the major catabolic pathway involved in removing and recycling damaged macromolecules and organelles and several evidences suggest that dysfunctions of this pathway contribute to the onset and progression of central and peripheral neurodegenerative diseases. Diabetic retinopathy (DR) is a serious complication of diabetes mellitus representing the main preventable cause of acquired blindness worldwide. DR has traditionally been considered as a microvascular disease, however this concept has evolved and neurodegeneration and neuroinflammation have emerged as important determinants in the pathogenesis and evolution of the retinal pathology. Here we review the role of autophagy in experimental models of DR and explore the potential of this pathway as a target for alternative therapeutic approaches.
Collapse
Affiliation(s)
- Annagrazia Adornetto
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Carlo Gesualdo
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Maria Luisa Laganà
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rossella Russo
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|