1
|
Freuchet A, Johansson E, Frazier A, Litvan I, Goldman JG, Alcalay RN, Sulzer D, Lindestam Arlehamn CS, Sette A. Differential memory enrichment of cytotoxic CD4 T cells in Parkinson's disease patients reactive to α-synuclein. NPJ Parkinsons Dis 2025; 11:127. [PMID: 40368950 PMCID: PMC12078614 DOI: 10.1038/s41531-025-00981-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/28/2025] [Indexed: 05/16/2025] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease with a largely unknown etiology. Although the loss of dopaminergic neurons in the substantia nigra pars compacta is the pathological hallmark of PD, neuroinflammation also plays a fundamental role in PD pathology. We have previously reported that PD patients have increased frequencies of T cells reactive to peptides from α-synuclein (α-syn). However, not all PD participants respond to α-syn. Furthermore, we have previously found that CD4 T cells from PD participants responding to α-syn (PD_R) are transcriptionally distinct from PD participants not responding to α-syn (PD_NR). To gain further insight into the pathology of PD_R participants, we investigated surface protein expression of 11 proteins whose genes had previously been found to be differentially expressed when comparing PD_R and healthy control participants not responding to α-syn (HC_NR). We found that Cadherin EGF LAG seven-pass G-type receptor 2 (CELSR2) was expressed on a significantly higher proportion of CD4 effector memory T cells (TEM) in PD_R compared to HC_NR. Single-cell RNA sequencing analysis of cells expressing or not expressing CELSR2 revealed that PD_R participants have elevated frequencies of activated TEM subsets and an almost complete loss of cytotoxic TEM cells. Flow cytometry analyses confirmed that Granulysin+ CD4 cytotoxic TEM cells are reduced in PD_R. Taken together, these results provide further insight into the perturbation of T cell subsets in PD_R, and highlights the need for further investigation into the role of Granulysin+ CD4 cytotoxic TEM in PD pathology.
Collapse
Affiliation(s)
- Antoine Freuchet
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Emil Johansson
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - April Frazier
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Irene Litvan
- Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| | - Jennifer G Goldman
- JPG Enterprises LLC; prior: Shirley Ryan Ability Lab and Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Roy N Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - David Sulzer
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Neurology, Columbia University, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
- Departments of Psychiatry and Pharmacology, Columbia University, New York State Psychiatric Institute, New York, NY, USA
| | - Cecilia S Lindestam Arlehamn
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Center for Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Alessandro Sette
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
He R, Wei Y, Yan S, Chen J, Guan Y, Xiong X, Liang L, Guan C, Liu H, Ouyang Y, Wang J, Peng X, Ye J, Zhao J, Lai B, Wang Y, Peng J, Quan Q. Wnt 3a-Modified Scaffolds Improve Nerve Regeneration by Boosting Schwann Cell Function. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63317-63332. [PMID: 39520323 PMCID: PMC11583969 DOI: 10.1021/acsami.4c15013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A pivotal approach in engineering artificial peripheral nerve sheaths encompasses the augmentation of the regenerative microenvironment via the manipulation of Schwann cells (SCs). Our investigation employed single-cell sequencing analysis to elucidate the potential functions of Schwann cells and the Wnt pathway in facilitating peripheral nerve regeneration. In vitro studies showed that activating the Wnt signaling pathway promotes the transition to repair SCs, boosting their growth, movement, and immune functions. To better understand the peripheral nerve regeneration environment, we created a polymer scaffold using ammonization and electrospinning. The Wnt3a protein was incorporated into the polycaprolactone (PCL) electrospun fiber surface. In a rat sciatic nerve defect model, the Wnt3a-modified scaffold showed better nerve repair outcomes than traditional electrospun scaffolds. After a week, the test group showed better immune regulation and angiogenesis, with a significant increase in axon growth rate observed after 3 weeks. Three-month-long animal experiments revealed notable improvements in neuroelectrophysiology, reduced organ atrophy, and enhanced sciatic nerve recovery. In this nerve defect model, Wnt3a-modified neural scaffolds achieved repair effects.
Collapse
Affiliation(s)
- Ruichao He
- School of Medicine, Nankai University, Tianjin 300071, P. R. China
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| | - Yu Wei
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| | - Shi Yan
- School of Medicine, Nankai University, Tianjin 300071, P. R. China
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| | - Jiajie Chen
- School of Medicine, Nankai University, Tianjin 300071, P. R. China
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| | - Yanjun Guan
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| | - Xing Xiong
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| | - Lijing Liang
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| | - Congcong Guan
- School of Medicine, Nankai University, Tianjin 300071, P. R. China
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| | - Haolin Liu
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| | - Yiben Ouyang
- School of Medicine, Nankai University, Tianjin 300071, P. R. China
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| | - Junli Wang
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| | - Xiwei Peng
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| | - Jianting Ye
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| | - Jinjuan Zhao
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| | - Biqin Lai
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, P. R. China
| | - Yu Wang
- School of Medicine, Nankai University, Tianjin 300071, P. R. China
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
- Co-innovation Center of Neuroregeneration, Nantong University Nantong, Jiangsu Province 226007, P. R. China
| | - Jiang Peng
- School of Medicine, Nankai University, Tianjin 300071, P. R. China
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
- Co-innovation Center of Neuroregeneration, Nantong University Nantong, Jiangsu Province 226007, P. R. China
| | - Qi Quan
- Department of Orthopedic Surgery, Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing,100048, P. R. China
| |
Collapse
|
3
|
Yan J, Huai Y, Liang Q, Lin L, Liao B. Proteome-wide Mendelian randomization provides novel insights into the pathogenesis and druggable targets of osteoporosis. Front Med (Lausanne) 2024; 11:1426261. [PMID: 39526243 PMCID: PMC11543481 DOI: 10.3389/fmed.2024.1426261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Background With the aging population, the prevalence and impact of osteoporosis are expected to rise, and existing anti-osteoporosis agents have limitations due to adverse events. This study aims to discover novel drug targets for osteoporosis. Methods The protein data were obtained from the latest proteome-wide association studies (PWAS) including 54, 219 participants. The osteoporosis data were extracted from a GWAS meta-analysis, characterized by heel bone mineral density (HBMD) comprising 426,824 individuals. Mendelian randomization (MR) was the primary approach used to establish genetic causality between specific traits. Summary-data-based MR (SMR), colocalization analysis, heterogeneity test, and external validation were applied to ensure the findings were reliable. The underlying mechanisms behind these causal associations were investigated by additional analyses. Finally, the druggability of the identified proteins was assessed. Results After Bonferroni correction, a total of 84 proteins were found to have a genetic association with osteoporosis. With strong colocalization evidence, proteins such as ACHE, HS6ST1, LRIG1, and LRRC37A2 were found to negatively influence HBMD, whereas CELSR2, CPE, FN1, FOXO1, and FSHB exhibited a positive association with HBMD. No significant heterogeneity was found. Additionally, CELSR2, FN1, FSHB, HS6ST1, LRIG1, and LRRC37A2 were replicated in the external validation. The effect of FSHB on HBMD was more pronounced in females compared to males. Interestingly, ACHE, LRIG1, FN1, and FOXO1 were observed to partially act on HBMD through BMI. Phewas analysis indicated that CPE and FOXO1 did not have genetic associations with any phenotypes other than osteoporosis. FN1 was highlighted as the most significant protein by protein-protein interaction network analysis. Conclusion In conclusion, this study offers valuable insights into the role of specific proteins in the development of osteoporosis, and underscores potential therapeutic targets. Future studies should emphasize exploring these causal relationships and elucidating their underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Bo Liao
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Mitz AR, Boccuto L, Thurm A. Evidence for common mechanisms of pathology between SHANK3 and other genes of Phelan-McDermid syndrome. Clin Genet 2024; 105:459-469. [PMID: 38414139 PMCID: PMC11025605 DOI: 10.1111/cge.14503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/29/2024]
Abstract
Chromosome 22q13.3 deletion (Phelan-McDermid) syndrome (PMS, OMIM 606232) is a rare genetic condition that impacts neurodevelopment. PMS most commonly results from heterozygous contiguous gene deletions that include the SHANK3 gene or likely pathogenic variants of SHANK3 (PMS-SHANK3 related). Rarely, chromosomal rearrangements that spare SHANK3 share the same general phenotype (PMS-SHANK3 unrelated). Very recent human and model system studies of genes that likely contribute to the PMS phenotype point to overlap in gene functions associated with neurodevelopment, synaptic formation, stress/inflammation and regulation of gene expression. In this review of recent findings, we describe the functional overlaps between SHANK3 and six partner genes of 22q13.3 (PLXNB2, BRD1, CELSR1, PHF21B, SULT4A1, and TCF20), which suggest a model that explains the commonality between PMS-SHANK3 related and PMS-SHANK3 unrelated classes of PMS. These genes are likely not the only contributors to neurodevelopmental impairments in the region, but they are the best documented to date. The review provides evidence for the overlapping and likely synergistic contributions of these genes to the PMS phenotype.
Collapse
Affiliation(s)
- Andrew R. Mitz
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Luigi Boccuto
- Healthcare Genetics and Genomics Interdisciplinary Doctoral Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC, USA
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping Service, Office of the Clinical Director, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Pugnetti L, Curci D, Bidoli C, Gerdol M, Celsi F, Renzo S, Paci M, Lega S, Nonnis M, Maestro A, Brumatti LV, Lionetti P, Pallavicini A, Licastro D, Edomi P, Decorti G, Stocco G, Lucafò M, Bramuzzo M. Gene expression profiling in white blood cells reveals new insights into the molecular mechanisms of thalidomide in children with inflammatory bowel disease. Biomed Pharmacother 2023; 164:114927. [PMID: 37257228 DOI: 10.1016/j.biopha.2023.114927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
Thalidomide has emerged as an effective immunomodulator in the treatment of pediatric patients with inflammatory bowel disease (IBD) refractory to standard therapies. Cereblon (CRBN), a component of E3 protein ligase complex that mediates ubiquitination and proteasomal degradation of target proteins, has been identified as the primary target of thalidomide. CRBN plays a crucial role in thalidomide teratogenicity, however it is unclear whether it is also involved in the therapeutic effects in IBD patients. This study aimed at identifying the molecular mechanisms underpinning thalidomide action in pediatric IBD. In this study, ten IBD pediatric patients responsive to thalidomide were prospectively enrolled. RNA-sequencing (RNA-seq) analysis and functional enrichment analysis were carried out on peripheral blood mononuclear cells (PBMC) obtained before and after twelve weeks of treatment with thalidomide. RNA-seq analysis revealed 378 differentially expressed genes before and after treatment with thalidomide. The most deregulated pathways were cytosolic calcium ion concentration, cAMP-mediated signaling, eicosanoid signaling and inhibition of matrix metalloproteinases. Neuronal signaling mechanisms such as CREB signaling in neurons and axonal guidance signaling also emerged. Connectivity Map analysis revealed that thalidomide gene expression changes were similar to those exposed to MLN4924, an inhibitor of NEDD8 activating enzyme, suggesting that thalidomide exerts its immunomodulatory effects by acting on the ubiquitin-proteasome pathway. In vitro experiments on cell lines confirmed the effect of thalidomide on candidate altered pathways observed in patients. These results represent a unique resource for enhanced understanding of thalidomide mechanism in pediatric patients with IBD, providing novel potential targets associated with drug response.
Collapse
Affiliation(s)
- Letizia Pugnetti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy
| | - Debora Curci
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Carlotta Bidoli
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Fulvio Celsi
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Sara Renzo
- Gastroenterology and Nutrition Unit, Meyer Children's Hospital IRCSS, 50139 Florence, Italy
| | - Monica Paci
- Gastroenterology and Nutrition Unit, Meyer Children's Hospital IRCSS, 50139 Florence, Italy
| | - Sara Lega
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Martina Nonnis
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Alessandra Maestro
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Liza Vecchi Brumatti
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Paolo Lionetti
- Gastroenterology and Nutrition Unit, Meyer Children's Hospital IRCSS, 50139 Florence, Italy; Department NEUROFARBA, University of Florence, 50139 Florence, Italy
| | | | | | - Paolo Edomi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuliana Decorti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy; Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Gabriele Stocco
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy; Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Marianna Lucafò
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Matteo Bramuzzo
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| |
Collapse
|
6
|
Wan S, Sun Y, Zong J, Meng W, Yan J, Chen K, Wang S, Guo D, Xiao Z, Zhou Q, Yin Z, Yang M. METTL3-dependent m 6A methylation facilitates uterine receptivity and female fertility via balancing estrogen and progesterone signaling. Cell Death Dis 2023; 14:349. [PMID: 37270544 DOI: 10.1038/s41419-023-05866-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/05/2023]
Abstract
Infertility is a worldwide reproductive health problem and there are still many unknown etiologies of infertility. In recent years, increasing evidence emerged and confirmed that epigenetic regulation played a leading role in reproduction. However, the function of m6A modification in infertility remains unknown. Here we report that METTL3-dependent m6A methylation plays an essential role in female fertility via balancing the estrogen and progesterone signaling. Analysis of GEO datasets reveal a significant downregulation of METTL3 expression in the uterus of infertile women with endometriosis or recurrent implantation failure. Conditional deletion of Mettl3 in female reproductive tract by using a Pgr-Cre driver results in infertility due to compromised uterine endometrium receptivity and decidualization. m6A-seq analysis of the uterus identifies the 3'UTR of several estrogen-responsive genes with METTL3-dependent m6A modification, like Elf3 and Celsr2, whose mRNAs become more stable upon Mettl3 depletion. However, the decreased expression levels of PR and its target genes, including Myc, in the endometrium of Mettl3 cKO mice indicate a deficiency in progesterone responsiveness. In vitro, Myc overexpression could partially compensate for uterine decidualization failure caused by Mettl3 deficiency. Collectively, this study reveals the role of METTL3-dependent m6A modification in female fertility and provides insight into the pathology of infertility and pregnancy management.
Collapse
Affiliation(s)
- Shuo Wan
- The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
- The Biomedical Translational Research Institute, Guangzhou Key Laboratory for Germ-free animals and Microbiota Application, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Regenerative Medicine of the Ministry of Education, International Joint Laboratory for Embryonic Development and Prenatal Medicine, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yadong Sun
- The Biomedical Translational Research Institute, Guangzhou Key Laboratory for Germ-free animals and Microbiota Application, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jinbao Zong
- Clinical Laboratory and Central Laboratory, the Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, 266033, China
| | - Wanqing Meng
- The Biomedical Translational Research Institute, Guangzhou Key Laboratory for Germ-free animals and Microbiota Application, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jiacong Yan
- Reproductive Medical Center, The First People's Hospital of Yunnan Province, Kunming, 650021, China
| | - Kexin Chen
- Reproductive Medical Center, The First People's Hospital of Yunnan Province, Kunming, 650021, China
| | - Sanfeng Wang
- Guangdong Women and Children Hospital, Guangzhou, 510010, China
| | - Daji Guo
- Department of Neurology, Sun Yat-sen Memorial Hospital, 510123, Guangzhou, China
| | - Zhiqiang Xiao
- The Biomedical Translational Research Institute, Guangzhou Key Laboratory for Germ-free animals and Microbiota Application, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Qinghua Zhou
- The Biomedical Translational Research Institute, Guangzhou Key Laboratory for Germ-free animals and Microbiota Application, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Guangzhou Key Laboratory for Germ-free animals and Microbiota Application, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China.
| | - Meixiang Yang
- The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.
- The Biomedical Translational Research Institute, Guangzhou Key Laboratory for Germ-free animals and Microbiota Application, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China.
| |
Collapse
|
7
|
Jang TH, Huang WC, Tung SL, Lin SC, Chen PM, Cho CY, Yang YY, Yen TC, Lo GH, Chuang SE, Wang LH. MicroRNA-485-5p targets keratin 17 to regulate oral cancer stemness and chemoresistance via the integrin/FAK/Src/ERK/β-catenin pathway. J Biomed Sci 2022; 29:42. [PMID: 35706019 PMCID: PMC9202219 DOI: 10.1186/s12929-022-00824-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/07/2022] [Indexed: 01/21/2023] Open
Abstract
Background The development of drug resistance in oral squamous cell carcinoma (OSCC) that frequently leads to recurrence and metastasis after initial treatment remains an unresolved challenge. Presence of cancer stem cells (CSCs) has been increasingly reported to be a critical contributing factor in drug resistance, tumor recurrence and metastasis. Thus, unveiling of mechanisms regulating CSCs and potential targets for developing their inhibitors will be instrumental for improving OSCC therapy. Methods siRNA, shRNA and miRNA that specifically target keratin 17 (KRT17) were used for modulation of gene expression and functional analyses. Sphere-formation and invasion/migration assays were utilized to assess cancer cell stemness and epithelial mesenchymal transition (EMT) properties, respectively. Duolink proximity ligation assay (PLA) was used to examine molecular proximity between KRT17 and plectin, which is a large protein that binds cytoskeleton components. Cell proliferation assay was employed to evaluate growth rates and viability of oral cancer cells treated with cisplatin, carboplatin or dasatinib. Xenograft mouse tumor model was used to evaluate the effect of KRT17- knockdown in OSCC cells on tumor growth and drug sensitization. Results Significantly elevated expression of KRT17 in highly invasive OSCC cell lines and advanced tumor specimens were observed and high KRT17 expression was correlated with poor overall survival. KRT17 gene silencing in OSCC cells attenuated their stemness properties including markedly reduced sphere forming ability and expression of stemness and EMT markers. We identified a novel signaling cascade orchestrated by KRT17 where its association with plectin resulted in activation of integrin β4/α6, increased phosphorylation of FAK, Src and ERK, as well as stabilization and nuclear translocation of β-catenin. The activation of this signaling cascade was correlated with enhanced OSCC cancer stemness and elevated expression of CD44 and epidermal growth factor receptor (EGFR). We identified and demonstrated KRT17 to be a direct target of miRNA-485-5p. Ectopic expression of miRNA-485-5p inhibited OSCC sphere formation and caused sensitization of cancer cells towards cisplatin and carboplatin, which could be significantly rescued by KRT17 overexpression. Dasatinib treatment that inhibited KRT17-mediated Src activation also resulted in OSCC drug sensitization. In OSCC xenograft mouse model, KRT17 knockdown significantly inhibited tumor growth, and combinatorial treatment with cisplatin elicited a greater tumor inhibitory effect. Consistently, markedly reduced levels of integrin β4, active β-catenin, CD44 and EGFR were observed in the tumors induced by KRT17 knockdown OSCC cells. Conclusions A novel miRNA-485-5p/KRT17/integrin/FAK/Src/ERK/β-catenin signaling pathway is unveiled to modulate OSCC cancer stemness and drug resistance to the common first-line chemotherapeutics. This provides a potential new therapeutic strategy to inhibit OSCC stem cells and counter chemoresistance. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00824-z.
Collapse
Affiliation(s)
- Te-Hsuan Jang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan.,National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chieh Huang
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Shiao-Lin Tung
- Department of Hematology and Oncology, Ton-Yen General Hospital, Zhubei City, Hsinchu County, Taiwan.,Department of Nursing, Hsin Sheng Junior College of Medical Care and Management, Taoyuan City, Taiwan
| | - Sheng-Chieh Lin
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Po-Ming Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Chun-Yu Cho
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Ya-Yu Yang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Tzu-Chen Yen
- Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Guo-Hsuen Lo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shuang-En Chuang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan.
| | - Lu-Hai Wang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan. .,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan. .,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|