1
|
Yamaguchi H, Kitami M, Li M, Swaminathan S, Darabi R, Takemaru KI, Komatsu Y. Disruption of distal appendage protein CEP164 causes skeletal malformation in mice. Biochem Biophys Res Commun 2024; 741:151063. [PMID: 39612644 PMCID: PMC12011135 DOI: 10.1016/j.bbrc.2024.151063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
The primary cilium is a cellular antenna to orchestrate cell growth and differentiation. Deficient or dysfunctional cilia are frequently linked to skeletal abnormalities. Previous research demonstrated that ciliary proteins regulating axoneme elongation are essential for skeletogenesis. However, the role of the ciliary proteins responsible for initiating cilium assembly in skeletal development remains unknown. Here, we investigate the function of centrosomal protein of 164 kDa (CEP164), a key ciliogenesis regulator that localizes at the distal appendages of the mother centriole, during skeletal development in mice. Interestingly, the mesodermal cell-specific Cep164 deletion resulted in severe bone defects and osteoblast-specific deletion of Cep164 affected bone development. In contrast, chondrocyte-specific Cep164 deletion did not cause overt skeletal abnormalities, indicating that CEP164 functions in a cell type-specific manner within skeletal tissues. Importantly, Cep164-mutant osteoblasts not only displayed a lack of cilia but also showed an increased number of γH2AX-positive cells, indicating the involvement of defective DNA damage response in the etiology of skeletal lesions of Cep164-mutant mice. These results demonstrate that CEP164 has both ciliary and non-ciliary functions to control osteoblast growth and survival. Our study therefore reveals a novel understanding of the pathogenesis of skeletal ciliopathies associated with CEP164 dysfunction.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Megumi Kitami
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Margaret Li
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Department of Kinesiology, Rice University Wiess School of Natural Science, Houston, TX, USA
| | - Sowmya Swaminathan
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Radbod Darabi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA; Institute of Muscle Biology and Cachexia, University of Houston, Houston, TX, USA
| | - Ken-Ichi Takemaru
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Yoshihiro Komatsu
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Graduate Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
2
|
Liu Z, Sa G, Zhang Z, Wu Q, Zhou J, Yang X. Regulatory role of primary cilia in oral and maxillofacial development and disease. Tissue Cell 2024; 88:102389. [PMID: 38714113 DOI: 10.1016/j.tice.2024.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/09/2024]
Abstract
Primary cilia have versatile functions, such as receiving signals from the extracellular microenvironment, mediating signaling transduction, and transporting ciliary substances, in tissue and organ development and clinical disease pathogenesis. During early development (embryos within 10 weeks) in the oral and maxillofacial region, defects in the structure and function of primary cilia can result in severe craniofacial malformations. For example, mice with mutations in the cilia-related genes Kif3a and IFT88 exhibit midline expansion and cleft lip/palate, which occur due to abnormalities in the fusion of the single frontonasal prominence and maxillary prominences. In the subsequent development of the oral and maxillofacial region, we discussed the regulatory role of primary cilia in the development of the maxilla, mandible, Meckel cartilage, condylar cartilage, lip, tongue, and tooth, among others. Moreover, primary cilia are promising regulators in some oral and maxillofacial diseases, such as tumors and malocclusion. We also summarize the regulatory mechanisms of primary cilia in oral and maxillofacial development and related diseases, including their role in various signaling transduction pathways. For example, aplasia of submandibular glands in the Kif3a mutant mice is associated with a decrease in SHH signaling within the glands. This review summarizes the similarities and specificities of the role of primary cilia in tissue and organ development and disease progression in the oral and maxillofacial region, which is expected to contribute several ideas for the treatment of primary cilia-related diseases.
Collapse
Affiliation(s)
- Zhan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Guoliang Sa
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China; Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Zhuoyu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Qingwei Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Jing Zhou
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xuewen Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China; Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Wuhan University, Wuhan, PR China.
| |
Collapse
|
3
|
Li Y, Yang S, Yang S. IFT20 and WWTR1 govern bone homeostasis via synchronously regulating the expression and stability of TβRII in osteoblast lineage cells. RESEARCH SQUARE 2024:rs.3.rs-4009802. [PMID: 38562782 PMCID: PMC10984095 DOI: 10.21203/rs.3.rs-4009802/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Balance of bone and marrow fat formation is critical for bone homeostasis. The imbalance of bone homeostasis will cause various bone diseases, such as osteoporosis. However, the precise mechanisms governing osteoporotic bone loss and marrow adipose tissue (MAT) accumulation remain poorly understood. By analysis of publicly available databases from bone samples of osteoporosis patients, we found that the expression of intraflagellar transport 20 (IFT20) and WW domain containing transcription regulator 1 (WWTR1) were significantly downregulated in osteoblast lineage cells. Additionally, we found that double deletions of IFT20 and WWTR1 in osteoblasts resulted in a significant accumulation of MAT and bone loss. Moreover, IFT20 and WWTR1 deficiency in osteoblasts exacerbated bone-fat imbalance in ovariectomy (OVX)- and high-fat-diet (HFD)-induced osteoporosis mouse models. Mechanistically, we found that deletions of IFT20 and WWTR1 in osteoblasts synergistically inhibited osteogenesis and promoted adipogenesis and osteoclastogenesis. We also found that IFT20 interacted with TGF-β receptor type II (TβRII) to enhance TβRII stability by blocking c-Cbl-mediated ubiquitination and degradation of TβRII. WWTR1 transcriptionally upregulated TβRII expression by directly binding its promoter. These findings indicate that targeting IFT20/WWTR1 may be a potential therapeutic strategy for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Yang Li
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Orthopaedic Surgery, School of Medicine, Johns Hopkins University Baltimore, MD 21205, USA
| | - Shuting Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shuying Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Kretschmer V, Schneider S, Matthiessen PA, Reichert D, Hotaling N, Glasßer G, Lieberwirth I, Bharti K, De Cegli R, Conte I, Nandrot EF, May-Simera HL. Deletion of IFT20 exclusively in the RPE ablates primary cilia and leads to retinal degeneration. PLoS Biol 2023; 21:e3002402. [PMID: 38048369 PMCID: PMC10721183 DOI: 10.1371/journal.pbio.3002402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/14/2023] [Accepted: 10/26/2023] [Indexed: 12/06/2023] Open
Abstract
Vision impairment places a serious burden on the aging society, affecting the lives of millions of people. Many retinal diseases are of genetic origin, of which over 50% are due to mutations in cilia-associated genes. Most research on retinal degeneration has focused on the ciliated photoreceptor cells of the retina. However, the contribution of primary cilia in other ocular cell types has largely been ignored. The retinal pigment epithelium (RPE) is a monolayer epithelium at the back of the eye intricately associated with photoreceptors and essential for visual function. It is already known that primary cilia in the RPE are critical for its development and maturation; however, it remains unclear whether this affects RPE function and retinal tissue homeostasis. We generated a conditional knockout mouse model, in which IFT20 is exclusively deleted in the RPE, ablating primary cilia. This leads to defective RPE function, followed by photoreceptor degeneration and, ultimately, vision impairment. Transcriptomic analysis offers insights into mechanisms underlying pathogenic changes, which include transcripts related to epithelial homeostasis, the visual cycle, and phagocytosis. Due to the loss of cilia exclusively in the RPE, this mouse model enables us to tease out the functional role of RPE cilia and their contribution to retinal degeneration, providing a powerful tool for basic and translational research in syndromic and non-syndromic retinal degeneration. Non-ciliary mechanisms of IFT20 in the RPE may also contribute to pathogenesis and cannot be excluded, especially considering the increasing evidence of non-ciliary functions of ciliary proteins.
Collapse
Affiliation(s)
- Viola Kretschmer
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Sandra Schneider
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Peter Andreas Matthiessen
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Dominik Reichert
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nathan Hotaling
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gunnar Glasßer
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Kapil Bharti
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- University of Naples “Federico II”, Naples, Italy
| | | | - Helen Louise May-Simera
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
5
|
Jung HJ, Dixon EE, Coleman R, Watnick T, Reiter JF, Outeda P, Cebotaru V, Woodward OM, Welling PA. Polycystin-2-dependent transcriptome reveals early response of autosomal dominant polycystic kidney disease. Physiol Genomics 2023; 55:565-577. [PMID: 37720991 PMCID: PMC11178268 DOI: 10.1152/physiolgenomics.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in polycystin genes, Pkd1 and Pkd2, but the underlying pathogenic mechanisms are poorly understood. To identify genes and pathways that operate downstream of polycystin-2 (PC2), a comprehensive gene expression database was created, cataloging changes in the transcriptome immediately following PC2 protein depletion. To explore cyst initiation processes, an immortalized mouse inner medullary collecting duct line was developed with the ability to knock out the Pkd2 gene conditionally. Genome-wide transcriptome profiling was performed using RNA sequencing in the cells immediately after PC2 was depleted and compared with isogenic control cells. Differentially expressed genes were identified, and a bioinformatic analysis pipeline was implemented. Altered expression of candidate cystogenic genes was validated in Pkd2 knockout mice. The expression of nearly 900 genes changed upon PC2 depletion. Differentially expressed genes were enriched for genes encoding components of the primary cilia, the canonical Wnt pathway, and MAPK signaling. Among the PC2-dependent ciliary genes, the transcription factor Glis3 was significantly downregulated. MAPK signaling formed a key node at the epicenter of PC2-dependent signaling networks. Activation of Wnt and MAPK signaling, concomitant with the downregulation of Glis3, was corroborated in Pkd2 knockout mice. The data identify a PC2 cilia-to-nucleus signaling axis and dysregulation of the Gli-similar subfamily of transcription factors as a potential initiator of cyst formation in ADPKD. The catalog of PC2-regulated genes should provide a valuable resource for future ADPKD research and new opportunities for drug development.NEW & NOTEWORTHY Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease. Mutations in polycystin genes cause the disease, but the underlying mechanisms of cystogenesis are unknown. To help fill this knowledge gap, we created an inducible cell model of ADPKD and assembled a catalog of genes that respond in immediate proximity to polycystin-2 depletion using transcriptomic profiling. The catalog unveils a ciliary signaling-to-nucleus axis proximal to polycystin-2 dysfunction, highlighting Glis, Wnt, and MAPK signaling.
Collapse
Affiliation(s)
- Hyun Jun Jung
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Eryn E Dixon
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Richard Coleman
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Terry Watnick
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States
- Chan Zuckerberg Biohub, San Francisco, California, United States
| | - Patricia Outeda
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Valeriu Cebotaru
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Owen M Woodward
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Paul A Welling
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
6
|
Onodera S, Azuma T. Hedgehog-Related Mutation Causes Bone Malformations with or without Hereditary Gene Mutations. Int J Mol Sci 2023; 24:12903. [PMID: 37629084 PMCID: PMC10454035 DOI: 10.3390/ijms241612903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The hedgehog (Hh) family consists of numerous signaling mediators that play important roles at various stages of development. Thus, the Hh pathway is essential for bone tissue development and tumorigenesis. Gorlin syndrome is a skeletal and tumorigenic disorder caused by gain-of-function mutations in Hh signaling. In this review, we first present the phenotype of Gorlin syndrome and the relationship between genotype and phenotype in bone and craniofacial tissues, including the causative gene as well as other Hh-related genes. Next, the importance of new diagnostic methods using next-generation sequencing and multiple gene panels will be discussed. We summarize Hh-related genetic disorders, including cilia disease, and the genetics of Hh-related bone diseases.
Collapse
Affiliation(s)
- Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan;
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan;
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| |
Collapse
|
7
|
Tahmasebi E, Mohammadi M, Alam M, Abbasi K, Gharibian Bajestani S, Khanmohammad R, Haseli M, Yazdanian M, Esmaeili Fard Barzegar P, Tebyaniyan H. The current regenerative medicine approaches of craniofacial diseases: A narrative review. Front Cell Dev Biol 2023; 11:1112378. [PMID: 36926524 PMCID: PMC10011176 DOI: 10.3389/fcell.2023.1112378] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
Craniofacial deformities (CFDs) develop following oncological resection, trauma, or congenital disorders. Trauma is one of the top five causes of death globally, with rates varying from country to country. They result in a non-healing composite tissue wound as they degenerate in soft or hard tissues. Approximately one-third of oral diseases are caused by gum disease. Due to the complexity of anatomical structures in the region and the variety of tissue-specific requirements, CFD treatments present many challenges. Many treatment methods for CFDs are available today, such as drugs, regenerative medicine (RM), surgery, and tissue engineering. Functional restoration of a tissue or an organ after trauma or other chronic diseases is the focus of this emerging field of science. The materials and methodologies used in craniofacial reconstruction have significantly improved in the last few years. A facial fracture requires bone preservation as much as possible, so tiny fragments are removed initially. It is possible to replace bone marrow stem cells with oral stem cells for CFDs due to their excellent potential for bone formation. This review article discusses regenerative approaches for different types of craniofacial diseases.
Collapse
Affiliation(s)
- Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohammadi
- School of Dentistry, Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Gharibian Bajestani
- Student Research Committee, Dentistry Research Center, Research Institute of Dental Sciences, Dental School, Shahid Behesti University of Medical Sciences, Tehran, Iran
| | - Rojin Khanmohammad
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Haseli
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| |
Collapse
|
8
|
Stevenson NL. The factory, the antenna and the scaffold: the three-way interplay between the Golgi, cilium and extracellular matrix underlying tissue function. Biol Open 2023; 12:287059. [PMID: 36802341 PMCID: PMC9986613 DOI: 10.1242/bio.059719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
The growth and development of healthy tissues is dependent on the construction of a highly specialised extracellular matrix (ECM) to provide support for cell growth and migration and to determine the biomechanical properties of the tissue. These scaffolds are composed of extensively glycosylated proteins which are secreted and assembled into well-ordered structures that can hydrate, mineralise, and store growth factors as required. The proteolytic processing and glycosylation of ECM components is vital to their function. These modifications are under the control of the Golgi apparatus, an intracellular factory hosting spatially organised, protein-modifying enzymes. Regulation also requires a cellular antenna, the cilium, which integrates extracellular growth signals and mechanical cues to inform ECM production. Consequently, mutations in either Golgi or ciliary genes frequently lead to connective tissue disorders. The individual importance of each of these organelles to ECM function is well-studied. However, emerging evidence points towards a more tightly linked system of interdependence between the Golgi, cilium and ECM. This review examines how the interplay between all three compartments underpins healthy tissue. As an example, it will look at several members of the golgin family of Golgi-resident proteins whose loss is detrimental to connective tissue function. This perspective will be important for many future studies looking to dissect the cause and effect of mutations impacting tissue integrity.
Collapse
Affiliation(s)
- Nicola L Stevenson
- Cell Biology Laboratories, School of Biochemistry, Faculty of Biomedical Sciences University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
9
|
Moore ER. Primary Cilia: The New Face of Craniofacial Research. Biomolecules 2022; 12:biom12121724. [PMID: 36551151 PMCID: PMC9776107 DOI: 10.3390/biom12121724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The primary cilium is a solitary, sensory organelle that extends from the surface of nearly every vertebrate cell, including craniofacial cells. This organelle converts chemical and physical external stimuli into intracellular signaling cascades and mediates several well-known signaling pathways simultaneously. Thus, the primary cilium is considered a cellular signaling nexus and amplifier. Primary cilia dysfunction directly results in a collection of diseases and syndromes that typically affect multiple organ systems, including the face and teeth. Despite this direct connection, primary cilia are largely unexplored in craniofacial research. In this review, I briefly summarize craniofacial abnormalities tied to the primary cilium and examine the existing information on primary cilia in craniofacial development and repair. I close with a discussion on preliminary studies that motivate future areas of exploration that are further supported by studies performed in long bone and kidney cells.
Collapse
Affiliation(s)
- Emily R Moore
- Harvard School of Dental Medicine, Department of Developmental Biology, 188 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
10
|
Tsitsiridis G, Steinkamp R, Giurgiu M, Brauner B, Fobo G, Frishman G, Montrone C, Ruepp A. CORUM: the comprehensive resource of mammalian protein complexes-2022. Nucleic Acids Res 2022; 51:D539-D545. [PMID: 36382402 PMCID: PMC9825459 DOI: 10.1093/nar/gkac1015] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
The CORUM database has been providing comprehensive reference information about experimentally characterized, mammalian protein complexes and their associated biological and biomedical properties since 2007. Given that most catalytic and regulatory functions of the cell are carried out by protein complexes, their composition and characterization is of greatest importance in basic and disease biology. The new CORUM 4.0 release encompasses 5204 protein complexes offering the largest and most comprehensive publicly available dataset of manually curated mammalian protein complexes. The CORUM dataset is built from 5299 different genes, representing 26% of the protein coding genes in humans. Complex information from 3354 scientific articles is mainly obtained from human (70%), mouse (16%) and rat (9%) cells and tissues. Recent curation work includes sets of protein complexes, Functional Complex Groups, that offer comprehensive collections of published data in specific biological processes and molecular functions. In addition, a new graphical analysis tool was implemented that displays co-expression data from the subunits of protein complexes. CORUM is freely accessible at http://mips.helmholtz-muenchen.de/corum/.
Collapse
Affiliation(s)
- George Tsitsiridis
- Institute of Experimental Genetics, Helmholtz Center Munich (GmbH), German research Center for environmental Health, Neuherberg D-85764, Germany
| | - Ralph Steinkamp
- Institute of Experimental Genetics, Helmholtz Center Munich (GmbH), German research Center for environmental Health, Neuherberg D-85764, Germany
| | - Madalina Giurgiu
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Berlin 13125, Germany
| | - Barbara Brauner
- Institute of Experimental Genetics, Helmholtz Center Munich (GmbH), German research Center for environmental Health, Neuherberg D-85764, Germany
| | - Gisela Fobo
- Institute of Experimental Genetics, Helmholtz Center Munich (GmbH), German research Center for environmental Health, Neuherberg D-85764, Germany
| | - Goar Frishman
- Institute of Experimental Genetics, Helmholtz Center Munich (GmbH), German research Center for environmental Health, Neuherberg D-85764, Germany
| | - Corinna Montrone
- Institute of Experimental Genetics, Helmholtz Center Munich (GmbH), German research Center for environmental Health, Neuherberg D-85764, Germany
| | - Andreas Ruepp
- To whom correspondence should be addressed. Tel: +49 89 3187 3189; Fax: +49 89 3187 3500;
| |
Collapse
|
11
|
Finetti F, Onnis A, Baldari CT. IFT20: An Eclectic Regulator of Cellular Processes beyond Intraflagellar Transport. Int J Mol Sci 2022; 23:ijms232012147. [PMID: 36292997 PMCID: PMC9603483 DOI: 10.3390/ijms232012147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Initially discovered as the smallest component of the intraflagellar transport (IFT) system, the IFT20 protein has been found to be implicated in several unconventional mechanisms beyond its essential role in the assembly and maintenance of the primary cilium. IFT20 is now considered a key player not only in ciliogenesis but also in vesicular trafficking of membrane receptors and signaling proteins. Moreover, its ability to associate with a wide array of interacting partners in a cell-type specific manner has expanded the function of IFT20 to the regulation of intracellular degradative and secretory pathways. In this review, we will present an overview of the multifaceted role of IFT20 in both ciliated and non-ciliated cells.
Collapse
|
12
|
Abstract
The primary cilium is a nonmotile microtubule-based organelle in most vertebrate cell types. The primary cilium plays a critical role in tissue development and homeostasis by sensing and transducing various signaling pathways. Ciliary proteins such as intraflagellar transport (IFT) proteins as well as ciliary motor proteins, kinesin and dynein, comprise a bidirectional intraflagellar transport system needed for cilia formation and function. Mutations in ciliary proteins that lead to loss or dysfunction of primary cilia cause ciliopathies such as Jeune syndrome and Ellis-van Creveld syndrome and cause abnormalities in tooth development. These diseases exhibit severe skeletal and craniofacial dysplasia, highlighting the significance of primary cilia in skeletal development. Cilia are necessary for the propagation of hedgehog, transforming growth factor β, platelet-derived growth factor, and fibroblast growth factor signaling during osteogenesis and chondrogenesis. Ablation of ciliary proteins such as IFT80 or IFT20 blocks cilia formation, which inhibits osteoblast differentiation, osteoblast polarity, and alignment and reduces bone formation. Similarly, cilia facilitate chondrocyte differentiation and production of a cartilage matrix. Cilia also play a key role in mechanosensing and are needed for increased bone formation in response to mechanical forces.
Collapse
Affiliation(s)
- Z. Chinipardaz
- Department of Basic and
Translational Sciences, University of Pennsylvania, School of Dental
Medicine, Philadelphia, PA, USA,Department of Periodontics,
School of Dental Medicine, University of Pennsylvania, Philadelphia, PA,
USA
| | - M. Liu
- Department of Periodontics,
School of Dental Medicine, University of Pennsylvania, Philadelphia, PA,
USA
| | - D.T. Graves
- Department of Periodontics,
School of Dental Medicine, University of Pennsylvania, Philadelphia, PA,
USA
| | - S. Yang
- Department of Basic and
Translational Sciences, University of Pennsylvania, School of Dental
Medicine, Philadelphia, PA, USA,Center for Innovation &
Precision Dentistry, School of Dental Medicine, School of Engineering and
Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA,The Penn Center for
Musculoskeletal Disorders, School of Medicine, University of Pennsylvania,
Philadelphia, PA, USA,S. Yang, Department of Basic and
Translational Sciences, University of Pennsylvania, School of Dental
Medicine, 240 S 40th Street, Philadelphia, PA 19104-6243, USA.
| |
Collapse
|
13
|
Yamaguchi H, Meyer MD, He L, Komatsu Y. Disruption of Trip11 in cranial neural crest cells is associated with increased ER and Golgi stress contributing to skull defects in mice. Dev Dyn 2022; 251:1209-1222. [PMID: 35147267 DOI: 10.1002/dvdy.461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/14/2022] [Accepted: 01/30/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Absence of Golgi microtubule-associated protein 210 (GMAP210), encoded by the TRIP11 gene, results in achondrogenesis. Although TRIP11 is thought to be specifically required for chondrogenesis, human fetuses with the mutation of TRIP11 also display bony skull defects where chondrocytes are usually not present. This raises an important question of how TRIP11 functions in bony skull development. RESULTS We disrupted Trip11 in neural crest-derived cell populations, which are critical for developing skull in mice. In Trip11 mutant skulls, expression levels of ER stress markers were increased compared to controls. Morphological analysis of electron microscopy data revealed swollen ER in Trip11 mutant skulls. Unexpectedly, we also found that Golgi stress increased in Trip11 mutant skulls, suggesting that both ER and Golgi stress-induced cell death may lead to osteopenia-like phenotypes in Trip11 mutant skulls. These data suggest that Trip11 plays pivotal roles in the regulation of ER and Golgi stress, which are critical for osteogenic cell survival. CONCLUSION We have recently reported that the molecular complex of ciliary protein and GMAP210 is required for collagen trafficking. In this paper, we further characterized the important role of Trip11 being possibly involved in the regulation of ER and Golgi stress during skull development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Matthew D Meyer
- Shared Equipment Authority, Rice University, Houston, Texas, USA
| | - Li He
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yoshihiro Komatsu
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Graduate Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
14
|
Yamaguchi H, Meyer MD, He L, Senavirathna L, Pan S, Komatsu Y. The molecular complex of ciliary and golgin protein is crucial for skull development. Development 2021; 148:270770. [PMID: 34128978 DOI: 10.1242/dev.199559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/27/2021] [Indexed: 01/13/2023]
Abstract
Intramembranous ossification, which consists of direct conversion of mesenchymal cells to osteoblasts, is a characteristic process in skull development. One crucial role of these osteoblasts is to secrete collagen-containing bone matrix. However, it remains unclear how the dynamics of collagen trafficking is regulated during skull development. Here, we reveal the regulatory mechanisms of ciliary and golgin proteins required for intramembranous ossification. During normal skull formation, osteoblasts residing on the osteogenic front actively secreted collagen. Mass spectrometry and proteomic analysis determined endogenous binding between ciliary protein IFT20 and golgin protein GMAP210 in these osteoblasts. As seen in Ift20 mutant mice, disruption of neural crest-specific GMAP210 in mice caused osteopenia-like phenotypes due to dysfunctional collagen trafficking. Mice lacking both IFT20 and GMAP210 displayed more severe skull defects compared with either IFT20 or GMAP210 mutants. These results demonstrate that the molecular complex of IFT20 and GMAP210 is essential for the intramembranous ossification during skull development.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Matthew D Meyer
- Shared Equipment Authority, Rice University, Houston, TX 77005, USA
| | - Li He
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lakmini Senavirathna
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yoshihiro Komatsu
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Graduate Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
15
|
Bai Y, Zhang Q, Chen Q, Zhou Q, Zhang Y, Shi Z, Nong H, Liu M, Zeng G, Zong S. Conditional knockout of the PDK-1 gene in osteoblasts affects osteoblast differentiation and bone formation. J Cell Physiol 2020; 236:5432-5445. [PMID: 33377210 DOI: 10.1002/jcp.30249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022]
Abstract
Osteoblasts are the main functional cells of bone formation, and they are responsible for the synthesis, secretion, and mineralization of the bone matrix. Phosphatidylinositol-3-kinase/Akt is an important signaling pathway involved in the regulation of cell proliferation, death, and survival. Some studies have shown that 3-phosphoinositide-dependent protein kinase-1 (PDK-1) plays an important role in the phosphorylation of Akt. In the present study, an osteocalcin (OCN) promoter-driven Cre-LoxP system was established to specifically delete the PDK-1 gene in osteoblasts. It was found that the size and weight of PDK-1 conditional gene knockout (cKO) mice were significantly reduced. von Kossa staining and microcomputed tomography showed that the trabecular thickness, trabecular number, and bone volume were significantly decreased, whereas trabecular separation was increased, as compared with wide-type littermates, which were characterized by a decreased bone mass. A model of distal femoral defect was established, and it was found that cKO mice delayed bone defect repair. In osteoblasts derived from PDK-1 cKO mice, the alkaline phosphatase (ALP) secretion and ability of calcium mineralization were significantly decreased, and the expressions of osteoblast-related proteins, runt-related transcription factor 2, OCN, and ALP were also clearly decreased. Moreover, the phosphorylation level of Akt and downstream factor GSK3β and their response to insulin-like growth factor-1 (IGF-1) decreased clearly. Therefore, we believe that PDK-1 plays a very important role in osteoblast differentiation and bone formation by regulating the PDK-1/Akt/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Yiguang Bai
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Department of Orthopaedics, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qiong Zhang
- Department of Nutrition and Food Hygiene, College of Public Hygiene of Guangxi Medical University, Nanning, Guangxi, China
| | - Qiaoling Chen
- Department of Oncology, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Quan Zhou
- Collaborative Innovation Center of Guangxi Biological Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Emergency, The Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yanan Zhang
- Collaborative Innovation Center of Guangxi Biological Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhuohua Shi
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haibin Nong
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Mingfu Liu
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Gaofeng Zeng
- Department of Nutrition and Food Hygiene, College of Public Hygiene of Guangxi Medical University, Nanning, Guangxi, China
| | - Shaohui Zong
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|