1
|
Zhang Y, Yang Z, Huang Q, Zhan X, Liu X, Guo D, Wang S, Rui W, Lü X, Shi C. Antimicrobial Activity of Eugenol Against Bacillus cereus and Its Application in Skim Milk. Foodborne Pathog Dis 2024; 21:147-159. [PMID: 38100031 DOI: 10.1089/fpd.2023.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Bacillus cereus is a foodborne pathogen widely distributed in the large-scale catering industry and produces spores. The study explored the antibacterial activity, potential mechanism of eugenol against B. cereus, and spores with germination rate. The minimum inhibitory concentration (MIC; 0.6 mg/mL) of eugenol to six B. cereus strains was compared with the control; B. cereus treated with eugenol had a longer lag phase. Eugenol at a concentration of more than 1/2MIC decreased viable B. cereus (∼5.7 log colony-forming unit [CFU]/mL) counts below detectable limits within 2 h, and eugenol of 3MIC reduced B. cereus (∼5.9 log CFU/mL) in skim milk below detectable limits within 30 min. The pH values of skim milk were unaffected by the addition of eugenol. The ΔE values below 2 show that the color variations of skim milk were not visible to the human eye. For sensory evaluation, eugenol did not significantly affect the color or structural integrity of the skim milk. It had a negative impact on the flavor and general sensory acceptance of the treated milk. Eugenol hyperpolarized B. cereus cell membrane, decreased intracellular ATP concentration, and increased intracellular reactive oxygen species contents and extracellular malondialdehyde contents, resulting in the cell membrane of B. cereus being damaged and permeabilized, and cell morphology being changed. In addition, according to the viable count, confocal laser scanning microscopy, and spore morphology changes, eugenol reduced the germination rate of B. cereus spores. These findings suggest that eugenol can be used as a new natural antibacterial agent to control B. cereus and spores in the food production chain.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhuokai Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qianning Huang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xing Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shuo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Wushuang Rui
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Fan X, Fu S, Jiang J, Liu D, Li X, Li W, Zhang H. Application of PHA surface binding proteins of alkali-tolerant Bacillus as surfactants. Braz J Microbiol 2024; 55:169-177. [PMID: 38019411 PMCID: PMC10920527 DOI: 10.1007/s42770-023-01176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023] Open
Abstract
Amphiphilic protein has lipophilic and hydrophilic domains, displaying the potential for development as a biosurfactant. The polyhydroxyalkanoate (PHA) surface binding protein derived from Bacillus is a type of protein that has not been studied for its emulsifying properties. In this study, PHA granule-associated protein (PhaP), PHA regulatory protein (PhaQ), and PHA synthase subunit (PhaR) derived from an alkali-tolerant PHA-producing Bacillus cereus HBL-AI were found and heterologously expressed in E. coli and purified to investigate their application as biosurfactants. It showed that the emulsification ability and stability of three amphiphilic proteins were higher than those of widely used chemical surfactants in diesel oil, vegetable oil, and lubricating oil. In particular, the PhaQ protein studied for the first time can form a stable emulsion layer in vegetable oil at a lower concentration (50 µg/mL), which greatly reduced the amount of protein used in emulsification. This clearly demonstrated that the PHA-binding protein of HBL-AI can be well applied as an environmentally friendly biosurfactants.
Collapse
Affiliation(s)
- Xueyu Fan
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Shuangqing Fu
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Junpo Jiang
- College of Life Science, Microbial Technology Innovation Center for Feed of Hebei Province, Hebei Agricultural University, Baoding, 071001, China
| | - Dexu Liu
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Xinyue Li
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Wei Li
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Honglei Zhang
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| |
Collapse
|
3
|
Kumar R, Li D, Luo L, Manu MK, Zhao J, Tyagi RD, Wong JWC. Genome-centric polyhydroxyalkanoate reconciliation reveals nutrient enriched growth dependent biosynthesis in Bacillus cereus IBA1. BIORESOURCE TECHNOLOGY 2023; 382:129210. [PMID: 37217149 DOI: 10.1016/j.biortech.2023.129210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Microbiological polyhydroxyalkanoates (PHAs) are rooted as the most promising bio-replacements of synthetic polymers. Inherent properties of these PHAs further expand their applicability in numerous industrial, environmental, and clinical sectors. To propel these, a new environmental, endotoxin free gram-positive bacterium i.e., Bacillus cereus IBA1 was identified to harbor advantageous PHA producer characteristics through high-throughput omics mining approaches. Unlike traditional fermentations, nutrient enriched strategy was used to enhance PHA granular concentrations by ∼2.3 folds to 2.78 ± 0.19 g/L. Additionally, this study is the first to confirm an underlying growth dependent PHA biogenesis through exploring PHA granule associated operons which harbour constitutively expressing PHA synthase (phaC) coupled with differentially expressing PHA synthase subunit (phaR) and regulatory protein (phaP, phaQ) amid different growth phases. Moreover, the feasibility of this promising microbial phenomenon could propel next-generation biopolymers, and increase industrial applicability of PHAs, thereby significantly contributing to the sustainable development.
Collapse
Affiliation(s)
- Rajat Kumar
- Institute of Bioresource and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Dongyi Li
- Institute of Bioresource and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Liwen Luo
- Institute of Bioresource and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong
| | - M K Manu
- Institute of Bioresource and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Jun Zhao
- Institute of Bioresource and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Rajeshwar D Tyagi
- Institute of Bioresource and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong; Research Centre for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523830, PR China.
| |
Collapse
|
4
|
Mehta RS, Mayers JR, Zhang Y, Bhosle A, Glasser NR, Nguyen LH, Ma W, Bae S, Branck T, Song K, Sebastian L, Pacheco JA, Seo HS, Clish C, Dhe-Paganon S, Ananthakrishnan AN, Franzosa EA, Balskus EP, Chan AT, Huttenhower C. Gut microbial metabolism of 5-ASA diminishes its clinical efficacy in inflammatory bowel disease. Nat Med 2023; 29:700-709. [PMID: 36823301 PMCID: PMC10928503 DOI: 10.1038/s41591-023-02217-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/10/2023] [Indexed: 02/25/2023]
Abstract
For decades, variability in clinical efficacy of the widely used inflammatory bowel disease (IBD) drug 5-aminosalicylic acid (5-ASA) has been attributed, in part, to its acetylation and inactivation by gut microbes. Identification of the responsible microbes and enzyme(s), however, has proved elusive. To uncover the source of this metabolism, we developed a multi-omics workflow combining gut microbiome metagenomics, metatranscriptomics and metabolomics from the longitudinal IBDMDB cohort of 132 controls and patients with IBD. This associated 12 previously uncharacterized microbial acetyltransferases with 5-ASA inactivation, belonging to two protein superfamilies: thiolases and acyl-CoA N-acyltransferases. In vitro characterization of representatives from both families confirmed the ability of these enzymes to acetylate 5-ASA. A cross-sectional analysis within the discovery cohort and subsequent prospective validation within the independent SPARC IBD cohort (n = 208) found three of these microbial thiolases and one acyl-CoA N-acyltransferase to be epidemiologically associated with an increased risk of treatment failure among 5-ASA users. Together, these data address a longstanding challenge in IBD management, outline a method for the discovery of previously uncharacterized gut microbial activities and advance the possibility of microbiome-based personalized medicine.
Collapse
Affiliation(s)
- Raaj S Mehta
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Jared R Mayers
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yancong Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Amrisha Bhosle
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Nathaniel R Glasser
- Resnick Sustainability Institute, California Institute of Technology, Pasadena, CA, USA
| | - Long H Nguyen
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wenjie Ma
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sena Bae
- Department of Immunology & Infectious Disease, T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Tobyn Branck
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Kijun Song
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Luke Sebastian
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | | - Hyuk-Soo Seo
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Clary Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Ashwin N Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eric A Franzosa
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Emily P Balskus
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Immunology & Infectious Disease, T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA, USA.
- Harvard Chan Microbiome in Public Health Center, T. H. Chan School of Public Health, Harvard University, Boston, MA, USA.
- Department of Immunology & Infectious Disease, T. H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| |
Collapse
|
5
|
Smith MD, Tassoulas LJ, Biernath TA, Richman JE, Aukema KG, Wackett LP. p-Nitrophenyl esters provide new insights and applications for the thiolase enzyme OleA. Comput Struct Biotechnol J 2021; 19:3087-3096. [PMID: 34141132 PMCID: PMC8180931 DOI: 10.1016/j.csbj.2021.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/21/2022] Open
Abstract
The OleA enzyme is distinct amongst thiolase enzymes in binding two long (≥C8) acyl chains into structurally-opposed hydrophobic channels, denoted A and B, to carry out a non-decarboxylative Claisen condensation reaction and initiate the biosynthesis of membrane hydrocarbons and β-lactone natural products. OleA has now been identified in hundreds of diverse bacteria via bioinformatics and high-throughput screening using p-nitrophenyl alkanoate esters as surrogate substrates. In the present study, p-nitrophenyl esters were used to probe the reaction mechanism of OleA and shown to be incorporated into Claisen condensation products for the first time. p-Nitrophenyl alkanoate substrates alone were shown not to undergo Claisen condensation, but co-incubation of p-nitrophenyl esters and CoA thioesters produced mixed Claisen products. Mixed product reactions were shown to initiate via acyl group transfer from a p-nitrophenyl carrier to the enzyme active site cysteine, C143. Acyl chains esterified to p-nitrophenol were synthesized and shown to undergo Claisen condensation with an acyl-CoA substrate, showing potential to greatly expand the range of possible Claisen products. Using p-nitrophenyl 1-13C-decanoate, the Channel A bound thioester chain was shown to act as the Claisen nucleophile, representing the first direct evidence for the directionality of the Claisen reaction in any OleA enzyme. These results both provide new insights into OleA catalysis and open a path for making unnatural hydrocarbon and β-lactone natural products for biotechnological applications using cheap and easily synthesized p-nitrophenyl esters.
Collapse
Affiliation(s)
- Megan D. Smith
- Biotechnology Institute, University of Minnesota, St Paul, MN, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
- Microbial and Plant Genomics Institute, University of Minnesota, St Paul, MN, USA
| | - Lambros J. Tassoulas
- Biotechnology Institute, University of Minnesota, St Paul, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St Paul, MN, USA
| | - Troy A. Biernath
- Biotechnology Institute, University of Minnesota, St Paul, MN, USA
| | - Jack E. Richman
- Biotechnology Institute, University of Minnesota, St Paul, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St Paul, MN, USA
| | - Kelly G. Aukema
- Biotechnology Institute, University of Minnesota, St Paul, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St Paul, MN, USA
| | - Lawrence P. Wackett
- Biotechnology Institute, University of Minnesota, St Paul, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St Paul, MN, USA
- Microbial and Plant Genomics Institute, University of Minnesota, St Paul, MN, USA
| |
Collapse
|