1
|
Takeuchi SY, Dusadeemeelap C, Kawamoto T, Matsubara T, Kokabu S, Addison WN. Epigenetic regulation of myogenesis by vitamin C. J Cell Physiol 2025; 240:e31472. [PMID: 39445529 DOI: 10.1002/jcp.31472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/15/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
The micronutrient vitamin C is essential for the maintenance of skeletal muscle health and homeostasis. The pro-myogenic effects of vitamin C have long been attributed to its role as a general antioxidant agent, as well as its role in collagen matrix synthesis and carnitine biosynthesis. Here, we show that vitamin C also functions as an epigenetic compound, facilitating chromatin landscape transitions during myogenesis through its activity as an enzymatic cofactor for histone H3 and DNA demethylation. Utilizing C2C12 myoblast cells to investigate the epigenetic effects of vitamin C on myogenesis, we observe that treatment of cells with vitamin C decreases global H3K9 methylation and increases 5-hmC levels. Furthermore, vitamin C treatment enhances myoblast marker gene expression and myotube formation during differentiation. We identify KDM7A as a histone lysine demethylase markedly upregulated during myogenesis. Accordingly, knockdown of Kdm7a prevents the pro-myogenic effects of vitamin C. Chromatin immunoprecipitation analysis showed that KDM7A occupies the promoter region of the myogenic transcription factor MyoD1 where it facilitates histone demethylation. We also confirm that the methylcytosine dioxygenases TET1 and TET2 are required for myogenic differentiation and that their loss blunts stimulation of myogenesis by vitamin C. In conclusion, our data suggest that an epigenetic mode of action plays a major role in the myogenic effects of vitamin C.
Collapse
Affiliation(s)
- Sachiko Yamashita Takeuchi
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Chirada Dusadeemeelap
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - William N Addison
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
2
|
Su Y, He S, Chen Q, Zhang H, Huang C, Zhao Q, Pu Y, He X, Jiang L, Ma Y, Zhao Q. Integrative ATAC-seq and RNA-seq analysis of myogenic differentiation of ovine skeletal muscle satellite cell. Genomics 2024; 116:110851. [PMID: 38692440 DOI: 10.1016/j.ygeno.2024.110851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Skeletal muscle satellite cells (SMSCs) play an important role in regulating muscle growth and regeneration. Chromatin accessibility allows physical interactions that synergistically regulate gene expression through enhancers, promoters, insulators, and chromatin binding factors. However, the chromatin accessibility altas and its regulatory role in ovine myoblast differentiation is still unclear. Therefore, ATAC-seq and RNA-seq analysis were performed on ovine SMSCs at the proliferation stage (SCG) and differentiation stage (SCD). 17,460 DARs (differential accessibility regions) and 3732 DEGs (differentially expressed genes) were identified. Based on joint analysis of ATAC-seq and RNA-seq, we revealed that PI3K-Akt, TGF-β and other signaling pathways regulated SMSCs differentiation. We identified two novel candidate genes, FZD5 and MAP2K6, which may affect the proliferation and differentiation of SMSCs. Our data identify potential cis regulatory elements of ovine SMSCs. This study can provide a reference for exploring the mechanisms of the differentiation and regeneration of SMSCs in the future.
Collapse
Affiliation(s)
- Yingxiao Su
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Siqi He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China; College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Qian Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China; College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Hechun Zhang
- Chaoyang Chaomu Breeding Farm Co., LTD, Chaoyang, Liaoning 122629, China
| | - Chang Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China; College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Qian Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China; College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yabin Pu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Xiaohong He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Lin Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Yuehui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China.
| |
Collapse
|
3
|
Alfaro GF, Rodning SP, Moisá SJ. Fetal programming effect of rumen-protected methionine on primiparous Angus × Simmental offspring's performance and skeletal muscle gene expression. J Anim Sci 2024; 102:skae006. [PMID: 38198718 PMCID: PMC10881097 DOI: 10.1093/jas/skae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/09/2024] [Indexed: 01/12/2024] Open
Abstract
Primiparous Angus × Simmental dams (n = 22) with an average body weight (BW) of 449 ± 32 kg of BW were divided based on two nutritional treatments: control (CTRL) and rumen-protected methionine (RPM). The control group received bermudagrass hay, corn gluten, and soybean hulls pellets supplementation (base diet); whereas the RPM group received the base diet in addition to 0.07% of DM of RPM at a fixed rate during the last trimester of gestation and the first ~80 d of lactation, in which calves (n = 17) were early weaned. Only male calves were included in this study. After weaning, calves born to RPM dams also received RPM from weaning (day 1) to day 100. Blood sampling and skeletal muscle biopsies for subsequent quantitative polymerase chain reaction (PCR) analysis were conducted on days 1, 25, 50, and 100 on calves. Quantitative PCR data were analyzed using GLIMMIX, and blood metabolites concentrations, BW, and body condition score (BCS) were analyzed using the MIXED procedure of SAS. There was no difference in maternal BW and BCS between treatments. Glucose and blood metabolites that served as biomarkers for liver health (e.g., aspartate transaminase, albumin, alkaline phosphatase, and alanine transaminase) were in the normal levels for all calves (P > 0.40). Calves in the RPM group had a greater expression of adipogenic genes (e.g., PPARG, LPL, and CEBPD) at day 100 compared with CTRL (P < 0.01). In addition, DNA methylation (DNMT1) and oxidative stress-related genes (SOD2 and NOS3) in the RPM group were upregulated at day 100 compared with CTRL (P < 0.01). These results may suggest that calves born to primiparous dams exposed to RPM supplementation are more prone to develop greater adipose tissue than CTRL calves. Furthermore, RPM supplementation may improve methylation processes, as shown by the upregulation of DNMT1. The results shown in our study aim at expanding the knowledge on fetal programming and early-life growth and development of beef cattle under supplementation with RPM.
Collapse
Affiliation(s)
- Gastón F Alfaro
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA
| | - Soren P Rodning
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA
| | - Sonia J Moisá
- Department of Animal Sciences, University of Tennessee, Knoxville, TN 37998, USA
| |
Collapse
|
4
|
Ahlawat S, Arora R, Sharma R, Chhabra P, Kumar A, Kaur M, Lal SB, Mishra DC, Farooqi MS, Srivastava S. Revelation of genes associated with energy generating metabolic pathways in the fighter type Aseel chicken of India through skeletal muscle transcriptome sequencing. Anim Biotechnol 2023; 34:4989-5000. [PMID: 37288785 DOI: 10.1080/10495398.2023.2219718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, comparative analysis of skeletal muscle transcriptome was carried out for four biological replicates of Aseel, a fighter type breed and Punjab Brown, a meat type breed of India. The profusely expressed genes in both breeds were related to muscle contraction and motor activity. Differential expression analysis identified 961 up-regulated and 979 down-regulated genes in Aseel at a threshold of log2 fold change ≥ ±2.0 (padj<0.05). Significantly enriched KEGG pathways in Aseel included metabolic pathways and oxidative phosphorylation, with higher expression of genes associated with fatty acid beta-oxidation, formation of ATP by chemiosmotic coupling, response to oxidative stress, and muscle contraction. The highly connected hub genes identified through gene network analysis in the Aseel gamecocks were HNF4A, APOA2, APOB, APOC3, AMBP, and ACOT13, which are primarily associated with energy generating metabolic pathways. The up-regulated genes in Punjab Brown chicken were found to be related to muscle growth and differentiation. There was enrichment of pathways such as focal adhesion, insulin signaling pathway and ECM receptor interaction in these birds. The results presented in this study help to improve our understanding of the molecular mechanisms associated with fighting ability and muscle growth in Aseel and Punjab Brown chicken, respectively.
Collapse
Affiliation(s)
- Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Ashish Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Mandeep Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Shashi Bhushan Lal
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Md Samir Farooqi
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sudhir Srivastava
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
5
|
Genome Editing to Abrogate Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:157-176. [DOI: 10.1007/978-981-19-5642-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
6
|
Yoshioka H, Komura S, Kuramitsu N, Goto A, Hasegawa T, Amizuka N, Ishimoto T, Ozasa R, Nakano T, Imai Y, Akiyama H. Deletion of Tfam in Prx1-Cre expressing limb mesenchyme results in spontaneous bone fractures. J Bone Miner Metab 2022; 40:839-852. [PMID: 35947192 DOI: 10.1007/s00774-022-01354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/21/2022] [Indexed: 10/15/2022]
Abstract
INTRODUCTION Osteoblasts require substantial amounts of energy to synthesize the bone matrix and coordinate skeleton mineralization. This study analyzed the effects of mitochondrial dysfunction on bone formation, nano-organization of collagen and apatite, and the resultant mechanical function in mouse limbs. MATERIALS AND METHODS Limb mesenchyme-specific Tfam knockout (Tfamf/f;Prx1-Cre: Tfam-cKO) mice were analyzed morphologically and histologically, and gene expressions in the limb bones were assessed by in situ hybridization, qPCR, and RNA sequencing (RNA-seq). Moreover, we analyzed the mitochondrial function of osteoblasts in Tfam-cKO mice using mitochondrial membrane potential assay and transmission electron microscopy (TEM). We investigated the pathogenesis of spontaneous bone fractures using immunohistochemical analysis, TEM, birefringence analyzer, microbeam X-ray diffractometer and nanoindentation. RESULTS Forelimbs in Tfam-cKO mice were significantly shortened from birth, and spontaneous fractures occurred after birth, resulting in severe limb deformities. Histological and RNA-seq analyses showed that bone hypoplasia with a decrease in matrix mineralization was apparent, and the expression of type I collagen and osteocalcin was decreased in osteoblasts of Tfam-cKO mice, although Runx2 expression was unchanged. Decreased type I collagen deposition and mineralization in the matrix of limb bones in Tfam-cKO mice were associated with marked mitochondrial dysfunction. Tfam-cKO mice bone showed a significantly lower Young's modulus and hardness due to poor apatite orientation which is resulted from decreased osteocalcin expression. CONCLUSION Mice with limb mesenchyme-specific Tfam deletions exhibited spontaneous limb bone fractures, resulting in severe limb deformities. Bone fragility was caused by poor apatite orientation owing to impaired osteoblast differentiation and maturation.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Shingo Komura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Norishige Kuramitsu
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Atsushi Goto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.
| |
Collapse
|
7
|
Nakamura Y, Saitou M, Komura S, Matsumoto K, Ogawa H, Miyagawa T, Saitou T, Imamura T, Imai Y, Takayanagi H, Akiyama H. Reduced dynamic loads due to hip dislocation induce acetabular cartilage degeneration by IL-6 and MMP3 via the STAT3/periostin/NF-κB axis. Sci Rep 2022; 12:12207. [PMID: 35842459 PMCID: PMC9288549 DOI: 10.1038/s41598-022-16585-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Developmental dysplasia of the hip (DDH) is characterized by anatomical abnormalities of the hip joint, ranging from mild acetabular dysplasia to hip subluxation and eventually dislocation. The mechanism underlying the cartilage degeneration of the hip joints exposed to reduced dynamic loads due to hip dislocation remains unknown. We established a rodent hip dislocation (disarticulation; DA) model of DDH (DA-DDH rats and mice) by swaddling. Expression levels of periostin (Postn) and catabolic factors, such as interleukin-6 (IL-6) and matrix metalloproteinase 3 (Mmp3), increased and those of chondrogenic markers decreased in the acetabular cartilage of the DA-DDH models. Postn induced IL-6 and Mmp3 expression in chondrocytes through integrin αVβ3, focal adhesion kinase, Src, and nuclear factor-κB (NF-κB) signaling. The microgravity environment created by a random positioning machine induced Postn expression in chondrocytes through signal transducer and activator of transcription 3 (STAT3) signaling. IL-6 stimulated Postn expression via STAT3 signaling. Furthermore, cartilage degeneration was suppressed in the acetabulum of Postn−/− DA-DDH mice compared with that in the acetabulum of wild type DA-DDH mice. In summary, reduced dynamic loads due to hip dislocation induced acetabular cartilage degeneration via IL-6 and MMP3 through STAT3/periostin/NF-κB signaling in the rodent DA-DDH models.
Collapse
Affiliation(s)
- Yutaka Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Mitsuru Saitou
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Shingo Komura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Kazu Matsumoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hiroyasu Ogawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takaki Miyagawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takashi Saitou
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Toon, Ehime, 791-0295, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Toon, Ehime, 791-0295, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime, 791-0295, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.
| |
Collapse
|
8
|
Sakai H, Sawada Y, Tokunaga N, Tanaka K, Nakagawa S, Sakakibara I, Ono Y, Fukada SI, Ohkawa Y, Kikugawa T, Saika T, Imai Y. Uhrf1 governs the proliferation and differentiation of muscle satellite cells. iScience 2022; 25:103928. [PMID: 35243267 PMCID: PMC8886052 DOI: 10.1016/j.isci.2022.103928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 12/06/2021] [Accepted: 02/10/2022] [Indexed: 11/19/2022] Open
Abstract
DNA methylation is an essential form of epigenetic regulation responsible for cellular identity. In muscle stem cells, termed satellite cells, DNA methylation patterns are tightly regulated during differentiation. However, it is unclear how these DNA methylation patterns affect the function of satellite cells. We demonstrate that a key epigenetic regulator, ubiquitin like with PHD and RING finger domains 1 (Uhrf1), is activated in proliferating myogenic cells but not expressed in quiescent satellite cells or differentiated myogenic cells in mice. Ablation of Uhrf1 in mouse satellite cells impairs their proliferation and differentiation, leading to failed muscle regeneration. Uhrf1-deficient myogenic cells exhibited aberrant upregulation of transcripts, including Sox9, with the reduction of DNA methylation level of their promoter and enhancer region. These findings show that Uhrf1 is a critical epigenetic regulator of proliferation and differentiation in satellite cells, by controlling cell-type-specific gene expression via maintenance of DNA methylation. Uhrf1 is activated in proliferating myogenic cells Uhrf1 in satellite cells is required for muscle regeneration Ablation of Uhrf1 in satellite cells impairs their proliferation and differentiation Uhrf1 controls cell-type-specific transcripts via maintenance of DNA methylation
Collapse
Affiliation(s)
- Hiroshi Sakai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
- Corresponding author
| | - Yuichiro Sawada
- Department of Urology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Naohito Tokunaga
- Division of Analytical Bio-Medicine, Advanced Research Support Center, Ehime University, Toon, Ehime 791-0295, Japan
| | - Kaori Tanaka
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-0054, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Iori Sakakibara
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo, Kumamoto 860-0811, Japan
| | - So-ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-0054, Japan
| | - Tadahiko Kikugawa
- Department of Urology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Takashi Saika
- Department of Urology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
- Corresponding author
| |
Collapse
|