1
|
Jiang A, Liu L, Wang J, Liu Y, Deng S, Jiang T. Linarin Ameliorates Restenosis After Vascular Injury in Type 2 Diabetes Mellitus via Regulating ADAM10-Mediated Notch Signaling Pathway. Cardiovasc Toxicol 2024; 24:587-597. [PMID: 38691303 DOI: 10.1007/s12012-024-09863-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Vascular lesions frequently arise as complication in patients diagnosed with diabetes mellitus (DM). Presently, percutaneous coronary intervention (PCI) and antithrombotic therapy serve as primary treatments. However, in-stent restenosis persists as a challenging clinical issue following PCI, lacking sustained and effective treatment. Linarin (LN) exhibits diverse pharmacological activities and is regarded as a potential drug for treating various diseases, including DM. But its specific role in restenosis after vascular injury in DM patients remains unclear. A rat model of diabetes-related restenosis was established to evaluate the role of LN on neointimal hyperplasia. Vascular smooth muscle cells (VSMCs) stimulated by high glucose (HG, 30 mM) underwent LN treatment. Additionally, an overexpression plasmid of A disintegrin and metalloproteinases (ADAM10) was constructed to transfect VSMCs. We employed CCK-8, Brdu, wound-healing scratch, and transwell migration assays to evaluate the proliferation and migration of VSMCs. Furthermore, western blot and immunofluorescence assays were utilized to investigate the expressions of ADAM10 and the downstream Notch signaling pathway in vivo and in vitro models. LN notably alleviated intimal hyperplasia after vascular injury in DM rats and reduced the protein expression of ADAM10, alongside its downstream Notch1 signaling pathway-related proteins (Notch1, NICD and Hes1) in rat carotid artery tissues. LN effectively suppressed the proliferation and migration of VSMCs induced by HG, downregulating the protein expression of ADAM10, Notch1, NICD and Hes1. Moreover, our findings indicated that ADAM10 overexpression significantly reversed LN's effects on proliferation, migration, and the expression of Notch1 signaling pathway-related proteins in HG-treated VSMCs. LN demonstrates potential therapeutic efficacy in addressing restenosis after diabetic-related vascular injury, with the ADAM10 mediated Notch signaling pathway playing a pivotal role.
Collapse
MESH Headings
- Animals
- ADAM10 Protein/metabolism
- Signal Transduction
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/enzymology
- Cell Movement/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/enzymology
- Cell Proliferation/drug effects
- Male
- Rats, Sprague-Dawley
- Neointima
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Amyloid Precursor Protein Secretases/metabolism
- Cells, Cultured
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/drug therapy
- Carotid Artery Injuries/enzymology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Hyperplasia
- Receptors, Notch/metabolism
- Receptor, Notch1/metabolism
- Transcription Factor HES-1/metabolism
- Transcription Factor HES-1/genetics
- Disease Models, Animal
- Rats
- Coronary Restenosis/pathology
- Coronary Restenosis/etiology
- Coronary Restenosis/metabolism
- Coronary Restenosis/prevention & control
Collapse
Affiliation(s)
- Aihua Jiang
- Department of Endocrinology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, No. 35 Jiefang Road, Zhengxiang District, Hengyang, 421001, Hunan Province, China
| | - Lin Liu
- Department of Gastroenterology, Hengyang Central Hospital, Hengyang, 421001, China
| | - Jianping Wang
- Department of Endocrinology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, No. 35 Jiefang Road, Zhengxiang District, Hengyang, 421001, Hunan Province, China
| | - Yinglan Liu
- Department of Endocrinology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, No. 35 Jiefang Road, Zhengxiang District, Hengyang, 421001, Hunan Province, China
| | - Shanshan Deng
- Department of Endocrinology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, No. 35 Jiefang Road, Zhengxiang District, Hengyang, 421001, Hunan Province, China
| | - Tao Jiang
- Department of Endocrinology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, No. 35 Jiefang Road, Zhengxiang District, Hengyang, 421001, Hunan Province, China.
| |
Collapse
|
2
|
Glanzner WG, da Silva Sousa LR, Gutierrez K, de Macedo MP, Currin L, Perecin F, Bordignon V. NRF2 attenuation aggravates detrimental consequences of metabolic stress on cultured porcine parthenote embryos. Sci Rep 2024; 14:2973. [PMID: 38316940 PMCID: PMC10844622 DOI: 10.1038/s41598-024-53480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2) is a crucial transcription factor that plays a central role in regulating oxidative stress pathways by binding antioxidant response elements, but its involvement in early embryo development remains largely unexplored. In this study, we demonstrated that NRF2 mRNA is expressed in porcine embryos from day 2 to day 7 of development, showing a decrease in abundance from day 2 to day 3, followed by an increase on day 5 and day 7. Comparable levels of NRF2 mRNA were observed between early-cleaving and more developmental competent embryos and late-cleaving and less developmental competent embryos on day 4 and day 5 of culture. Attenuation of NRF2 mRNA significantly decreased development of parthenote embryos to the blastocyst stage. When NRF2-attenuated embryos were cultured in presence of 3.5 mM or 7 mM glucose, development to the blastocyst stage was dramatically decreased in comparison to the control group (15.9% vs. 27.8% for 3.5 mM glucose, and 5.4% vs. 25.3% for 7 mM glucose). Supplementation of melatonin moderately improved the development of NRF2-attenuated embryos cultured in presence of 0.6 mM glucose. These findings highlight the importance of NRF2 in early embryo development, particularly in embryos cultured under metabolically stressful conditions.
Collapse
Affiliation(s)
- Werner Giehl Glanzner
- Department of Animal Science, McGill University, 21111, Lakeshore Road, Sainte Anne de Bellevue, QC, H9X 3V9, Canada.
| | - Leticia Rabello da Silva Sousa
- Veterinary Medicine Department, College of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, SP, Brazil
| | - Karina Gutierrez
- Department of Animal Science, McGill University, 21111, Lakeshore Road, Sainte Anne de Bellevue, QC, H9X 3V9, Canada
| | - Mariana Priotto de Macedo
- Department of Animal Science, McGill University, 21111, Lakeshore Road, Sainte Anne de Bellevue, QC, H9X 3V9, Canada
| | - Luke Currin
- Department of Animal Science, McGill University, 21111, Lakeshore Road, Sainte Anne de Bellevue, QC, H9X 3V9, Canada
| | - Felipe Perecin
- Veterinary Medicine Department, College of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, SP, Brazil
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, 21111, Lakeshore Road, Sainte Anne de Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
3
|
Bayo Jimenez MT, Frenis K, Hahad O, Steven S, Cohen G, Cuadrado A, Münzel T, Daiber A. Protective actions of nuclear factor erythroid 2-related factor 2 (NRF2) and downstream pathways against environmental stressors. Free Radic Biol Med 2022; 187:72-91. [PMID: 35613665 DOI: 10.1016/j.freeradbiomed.2022.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/23/2022] [Accepted: 05/19/2022] [Indexed: 12/14/2022]
Abstract
Environmental risk factors, including noise, air pollution, chemical agents, ultraviolet radiation (UVR) and mental stress have a considerable impact on human health. Oxidative stress and inflammation are key players in molecular pathomechanisms of environmental pollution and risk factors. In this review, we delineate the impact of environmental risk factors and the protective actions of the nuclear factor erythroid 2-related factor 2 (NRF2) in connection to oxidative stress and inflammation. We focus on well-established studies that demonstrate the protective actions of NRF2 and its downstream pathways against different environmental stressors. State-of-the-art mechanistic considerations on NRF2 signaling are discussed in detail, e.g. classical concepts like KEAP1 oxidation/electrophilic modification, NRF2 ubiquitination and degradation. Specific focus is also laid on NRF2-dependent heme oxygenase-1 induction with detailed presentation of the protective down-stream pathways of heme oxygenase-1, including interaction with BACH1 system. The significant impact of all environmental stressors on the circadian rhythm and the interactions of NRF2 with the circadian clock will also be considered here. A broad range of NRF2 activators is discussed in relation to environmental stressor-induced health side effects, thereby suggesting promising new mitigation strategies (e.g. by nutraceuticals) to fight the negative effects of the environment on our health.
Collapse
Affiliation(s)
- Maria Teresa Bayo Jimenez
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Katie Frenis
- Department of Hematology and Oncology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Leibniz Insitute for Resilience Research (LIR), Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, 86910, Israel; Ben Gurion University of the Negev, Eilat Campus, Eilat, 8855630, Israel
| | - Antonio Cuadrado
- Departamento de Bioquímica, Facultad de Medicina, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas 'Alberto Sols' UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
4
|
Zhang R, Niu S, Rong Z, Li F, Ni L, Di X, Liu C. A Potential Target for Diabetic Vascular Damage: High Glucose-Induced Monocyte Extracellular Vesicles Impair Endothelial Cells by Delivering miR-142-5p. Front Bioeng Biotechnol 2022; 10:913791. [PMID: 35615474 PMCID: PMC9124888 DOI: 10.3389/fbioe.2022.913791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Endothelial dysfunction is a key accessory to diabetic cardiovascular complications, and the regulatory role of the extracellular vesicles (EVs) from the innate immune system is growing. We tested whether EVs derived from high glucose-induced monocytes could shuttle microRNAs and impair endothelial cells. EVs from high glucose- and basal glucose-treated THP-1 cells (HG-THP-1 EVs and BG-THP-1 EVs) were isolated and identified. After coculture with THP-1 EVs, human umbilical vein endothelial cells (HUVECs) were tested by proliferation, migration, reactive oxygen species (ROS) detection assays, and western blot for Nrf2/NLRP3 signaling. MiR-142-5p was predicted by miRNAs databases and further verified by RT–qPCR and dual-luciferase reporter gene assays that inhibit Nrf2 expression. The regulation of miR-142-5p in HUVECs was further evaluated. A type 1 diabetes mellitus (T1DM) mouse model was developed for miR-142-5p inhibition. Aorta tissue was harvested for hematoxylin-eosin staining and immunohistochemistry of interleukin-1β (IL-1β). Compared to BG-THP-1 EVs, HG-THP-1 EVs significantly reduced migration and increased ROS production in HUVECs but did not affect proliferation. HG-THP-1 EVs induced suppression of Nrf2 signaling and NLRP3 signaling activation. RT–qPCR results showed that HG-THP-1 EVs overexpressed miR-142-5p in HUVECs. The transfection of miR-142-5p mimics into HUVECs exhibited consistent regulatory effects on HG-THP-1 EVs, whereas miR-142-5p inhibitors demonstrated protective effects. The miR-142-5p antagomir significantly reduced the IL-1β level in T1DM aortas despite morphological changes. To conclude, miR-142-5p transferred by high glucose-induced monocyte EVs participates in diabetic endothelial damage. The inhibition of miR-142-5p could be a potential adjuvant to diabetic cardiovascular protection.
Collapse
|
5
|
Sun J, Zhang Y, Yan L, Liu S, Wang W, Zhu Y, Wang W, Li S, He B, Wu L, Zhang L. Action of the Nrf2/ARE signaling pathway on oxidative stress in choroid plexus epithelial cells following lanthanum chloride treatment. J Inorg Biochem 2022; 231:111792. [DOI: 10.1016/j.jinorgbio.2022.111792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/01/2022]
|
6
|
Guohua F, Tieyuan Z, Xinping M, Juan X. Melatonin protects against PM2.5-induced lung injury by inhibiting ferroptosis of lung epithelial cells in a Nrf2-dependent manner. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112588. [PMID: 34364124 DOI: 10.1016/j.ecoenv.2021.112588] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
PM2.5 refers to ambient air particulate matter with aerodynamic diameters ≤ 2.5 µm, which has been a global environmental problem threatening public health in recent years. Melatonin serving as one of the predominant hormones secreted by the pineal gland displays multiple pharmacological properties in various diseases. However, little is known about the possible effects of melatonin in the development of lung injury induced by PM2.5. This study was designed to explore the potential roles of melatonin as well as its possible mechanisms in PM2.5-induced lung injury. In the present study, mice were intratracheally instilled with PM2.5 dissolved in sterile water to induce lung injury with or without intragastric administration of melatonin. The results showed that melatonin treatment significantly alleviated lung pathological injury and edema, apart from inhibiting inflammatory cell infiltration. Meantime, melatonin also decreased the makers of ferroptosis and lipid peroxidation products in lung tissues challenged with PM2.5. Additionally, melatonin promoted the nuclear translocation and expression of Nrf2 and the protein degradation of Keap1. However, the pulmonary protection and anti-ferroptosis effect of melatonin were counteracted in Nrf2-deficiency mice. In vitro experiments further demonstrated that Nrf2 knockdown could offset anti-ferroptosis effect of melatonin in MLE-12 lung epithelial cells. Taken together, our study disclosed that melatonin could relieve PM2.5-induced lung injury via inhibiting ferroptosis of lung epithelial cells by activating Nrf2. Hence, melatonin may be a promising candidate against lung injury associated with air particulate matter.
Collapse
Affiliation(s)
- Fan Guohua
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhu Tieyuan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Min Xinping
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Xiong Juan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|