1
|
Zhang Y, Wang K, Yang K, Shi Y, Hong J. Insight into the interaction between the RNA helicase CGH-1 and EDC-3 and its implications. Sci Rep 2021; 11:20359. [PMID: 34645931 PMCID: PMC8514580 DOI: 10.1038/s41598-021-99919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/30/2021] [Indexed: 12/03/2022] Open
Abstract
Previous studies indicated that the P-body components, CGH-1 and EDC-3 may play a crucial role in the regulation of lifespan in Caenorhabditis elegans. Homo sapiens DDX6 or Saccharomyces cerevisiae Dhh1p (CGH-1 in C. elegans) could form complexes with EDC3 (Edc3p in yeast), respectively, which is significant for translation inhibition and mRNA decay. However, it is currently unclear how CGH-1 can be recognized by EDC-3 in C. elegans. Here, we provided structural and biochemical insights into the interaction between CGH-1 and EDC-3. Combined with homology modeling, mutation, and ITC assays, we uncovered an interface between CGH-1 RecA2 domain and EDC-3 FDF-FEK. Additionally, GST-pulldown and co-localization experiments confirmed the interaction between CGH-1 and EDC-3 in vitro and in vivo. We also analyzed PATR-1-binding interface on CGH-1 RecA2 by ITC assays. Moreover, we unveiled the similarity and differences of the binding mode between EDC-3 and CAR-1 or PATR-1. Taken together, these findings provide insights into the recognition of DEAD-box protein CGH-1 by EDC-3 FDF-FEK motif, suggesting important functional implications.
Collapse
Affiliation(s)
- Yong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Ke Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Kanglong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Yunyu Shi
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Jingjun Hong
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China.
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei, People's Republic of China.
| |
Collapse
|