1
|
Zhu LR, Cui W, Liu HP. Molecular mechanisms of endoplasmic reticulum stress-mediated acute kidney injury in juvenile rats and the protective role of mesencephalic astrocyte-derived neurotrophic factor. J Pharm Pharmacol 2025; 77:609-620. [PMID: 39437337 DOI: 10.1093/jpp/rgae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVES This study examined the role of endoplasmic reticulum stress in pediatric acute kidney injury and the therapeutic effect of midbrain astrocyte-derived neurotrophic factor. METHODS Two-week-old Sprague-Dawley rats were divided into: Sham, ischemia-reperfusion injury-induced acute kidney injury (AKI), mesencephalic astrocyte-derived neurotrophic factor (MANF)-treated, tauroursodeoxycholic acid (TUDCA)-treated. Analyses were conducted 24 h post-treatment. Serum creatinine, cystatin C, Albumin, MANF levels were measured, cytokine concentrations in serum and renal tissues were determined using a Luminex assay. Histopathology was assessed via light and electron microscopy. Western blotting and RT-qPCR analyzed markers for oxidative stress, apoptosis, endoplasmic reticulum (ER) stress, and autophagy. HK-2 cells underwent hypoxia/reoxygenation (H/R) to simulate AKI and were treated with MANF or TUDCA. RESULTS AKI rats had increased serum creatinine, cystatin C, and inflammatory cytokines, along with significant renal damage, and showed loose and swollen ER structures, reduced cell proliferation, and elevated levels of IRE1, PERK, ATF6, CHOP, LC3-II/I, KIM-1, TLR4, JNK, and NF-κB. MANF treatment reduced these biomarkers and protein levels, improved ER structure and cell proliferation, alleviated oxidative stress, apoptosis, ER stress, and inhibited JNK/TLR4/NF-κB signaling. In HK-2 cells, MANF reduced ER stress and inflammation post-H/R exposure. CONCLUSIONS MANF treatment alleviates ER stress, oxidative stress, apoptosis, and inflammation in pediatric AKI, improving renal function and morphology.
Collapse
Affiliation(s)
- Li-Ran Zhu
- Anhui Institute of Pediatric Research, Anhui Provincial Children's Hospital (Children's Hospital of Fudan University Anhui Hospital, Children's Medical Center of Anhui Medical University), Wangjiang Road, Hefei, 230051 Anhui, China
| | - Wei Cui
- Department of Scientific Research and Education, Anhui Provincial Children's Hospital (Children's Hospital of Fudan University Anhui Hospital, Children's Medical Center of Anhui Medical University), Wangjiang Road, Hefei, 230051 Anhui, China
| | - Hai-Peng Liu
- Anhui Institute of Pediatric Research, Anhui Provincial Children's Hospital (Children's Hospital of Fudan University Anhui Hospital, Children's Medical Center of Anhui Medical University), Wangjiang Road, Hefei, 230051 Anhui, China
| |
Collapse
|
2
|
Zhou KG, Huang YB, Zhu ZW, Jiang M, Jin LJ, Guan Q, Tian LL, Zhang JX. Mesencephalic astrocyte-derived neurotrophic factor inhibits neuroinflammation through autophagy-mediated α-synuclein degradation. Arch Gerontol Geriatr 2025; 131:105738. [PMID: 39761611 DOI: 10.1016/j.archger.2024.105738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/14/2024] [Accepted: 12/30/2024] [Indexed: 02/25/2025]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder marked by the progressive loss of dopamine neurons in the substantia nigra. α-synuclein (SNCA) aggregation-induced microglia activation and neuroinflammation play vital role in the pathology of PD. Our previous studies showed that mesencephalic astrocyte-derived neurotrophic factor (MANF) could inhibit SNCA accumulation and Lipopolysaccharides (LPS)-induced neuroinflammation, but the specific molecular mechanism remains unclear. In this study, we showed that knock-down the expression of MANF leads to the up-regulation of inflammatory factor tumor necrosis factor-α (TNF-α). Exogenous MANF protein inhibits LPS-induced neuroinflammation in BV2 cells. Additionally, our results indicated that knock-down of the expression of MANF triggered autophagic pathway dysfunction, while exogenous addition of MANF protein or using adeno-associated virus 8 (AAV8) mediated MANF over-expression could activate the autophagic system and subsequently suppress SNCA accumulation. Furthermore, using autophagy inhibitor to block autophagic flux, we found that MANF prevented neuroinflammation by autophagy-mediated SNCA degradation. Collectively, this study indicated that MANF has potential therapeutic value for PD. Autophagy and its role in MANF-mediated anti-inflammatory properties may provide new sights that target SNCA pathology in PD.
Collapse
Affiliation(s)
- Kai-Ge Zhou
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yi-Bin Huang
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zi-Wen Zhu
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Ming Jiang
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China; Biomedical Research Center, Tongji University Suzhou Institute, Jiangsu, 215101, China
| | - Ling-Jing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qiang Guan
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Lu-Lu Tian
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Jing-Xing Zhang
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
3
|
Xie H, Zhang P, Yang S, Du J, Ren Y, Gao X, Li N, Yang T, Ma Y, Hou X. Myeloid-derived MANF ameliorates ethanol-induced liver injury by enhancing microRNA-223 expression. J Gastroenterol 2025:10.1007/s00535-025-02240-0. [PMID: 40111540 DOI: 10.1007/s00535-025-02240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Myeloid cells play a pivotal role in the pathogenesis of alcoholic liver disease (ALD), yet the mechanisms regulating their function and specific contributions to ALD remain inadequately understood. This study aims to investigate the role of mesencephalic astrocyte-derived neurotrophic factor (MANF) in the development of ALD. METHODS Myeloid-specific Manf knockout mice and wild-type controls were fed an ethanol-based diet for 10 days, followed by a single ethanol binge. Hepatic MANF levels, along with the correlation between MANF and inflammatory factors in patients with alcoholic hepatitis, were analyzed using the GSE28619 dataset. RESULTS Our study demonstrated that myeloid MANF expression in the liver was upregulated following chronic-plus-binge ethanol exposure. Deletion of the Manf gene in myeloid cells, including neutrophils, exacerbated ethanol-induced liver injury, steatosis, neutrophil infiltration, and reactive oxygen species production. Mechanistic analysis revealed that MANF promotes neutrophil miR-223 expression, a key anti-inflammatory factor in these cells. MANF enhances miR-223 transcription by increasing the expression of the transcription factor PU.1 via p38 mitogen-activated protein kinase signaling. In addition, hepatic MANF levels were elevated in patients with alcoholic hepatitis and correlated with IL-6, IL-1β, and phagocytic oxidase (phox) p47phoxlevels. CONCLUSION Myeloid-derived MANF mitigates alcohol-induced liver injury by upregulating the neutrophilic p38-PU.1-miR-223 axis.
Collapse
Affiliation(s)
- Huiyuan Xie
- Department of Laboratory Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Pingping Zhang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Shanru Yang
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jia Du
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yan Ren
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xianxian Gao
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Na Li
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Tao Yang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yang Ma
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Xin Hou
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
4
|
Yuan L, Dai Q, Wang X, Yang J, Yuan B. Unlocking the promise of MANF in diseases: Mechanistic insights and therapeutic potentials. Mol Biol Rep 2024; 51:1160. [PMID: 39549080 DOI: 10.1007/s11033-024-10111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a ubiquitous neurotrophic factor that exhibits a variety of physiological functions and plays a critical role in the exploitation of therapeutic potential across a range of diseases, including cardiovascular disorders, nervous system diseases, metabolic imbalances, and cancers. In the context of cardiac diseases, MANF significantly promotes cardiomyocyte survival and improves cardiac functionality. Furthermore, MANF not only provides neuroprotection by shielding neurons from damage and promoting nerve regeneration in neurological disorders, but also involves in insulin resistance, lipid metabolism disturbances and fat-containing liver lesions. However, the oncogenic or tumor suppressive function of MANF in cancer remains unclear, requiring further investigation to elucidate its precise role in the process of cancer initiation and progression. This review aims to summarize the latest advancements in understanding the molecular pathways, intricate mechanisms, and therapeutic potential of MANF in the prevention and treatment of various diseases, emphasizing its multifaceted contributions to health and disease management.
Collapse
Affiliation(s)
- Lingling Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Qiqiao Dai
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xirui Wang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jing Yang
- Experimental Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- School of Public Health, Anhui Medical University, 81 Mei Shan Road, Hefei, 230032, Anhui Province, China
| | - Bin Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
- School of Basic Medical Sciences, Anhui Medical University, 81 Mei Shan Road, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
5
|
Chen RB, Wang QY, Wang YY, Wang YD, Liu JH, Liao ZZ, Xiao XH. Feeding-induced hepatokines and crosstalk with multi-organ: A novel therapeutic target for Type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1094458. [PMID: 36936164 PMCID: PMC10020511 DOI: 10.3389/fendo.2023.1094458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Hyperglycemia, which can be caused by either an insulin deficit and/or insulin resistance, is the main symptom of Type 2 diabetes, a significant endocrine metabolic illness. Conventional medications, including insulin and oral antidiabetic medicines, can alleviate the signs of diabetes but cannot restore insulin release in a physiologically normal amount. The liver detects and reacts to shifts in the nutritional condition that occur under a wide variety of metabolic situations, making it an essential organ for maintaining energy homeostasis. It also performs a crucial function in glucolipid metabolism through the secretion of hepatokines. Emerging research shows that feeding induces hepatokines release, which regulates glucose and lipid metabolism. Notably, these feeding-induced hepatokines act on multiple organs to regulate glucolipotoxicity and thus influence the development of T2DM. In this review, we focus on describing how feeding-induced cross-talk between hepatokines, including Adropin, Manf, Leap2 and Pcsk9, and metabolic organs (e.g.brain, heart, pancreas, and adipose tissue) affects metabolic disorders, thus revealing a novel approach for both controlling and managing of Type 2 diabetes as a promising medication.
Collapse
Affiliation(s)
- Rong-Bin Chen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qi-Yu Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuan-Yuan Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ya-Di Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiang-Hua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhe-Zhen Liao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xin-Hua Xiao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
6
|
Qi X, Sun X, Wang M, Wang M, Qi Z, Cui C. Ginseng polysaccharides ameliorate abnormal lipid metabolism caused by acute alcoholic liver injury by promoting autophagy. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Xin Qi
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education Yanbian University Yanji China
| | - Xihan Sun
- Food Science and Engineering, Agricultural College Yanbian University Yanji China
| | - Muyao Wang
- Food Processing and Safety, Agricultural College Yanbian University Yanji China
| | - Mei Wang
- Dalian Academy of Agricultural Sciences Dalian China
| | - Zhanwen Qi
- Yanbian Han Gongfang Health Products Co., Ltd. Yanji China
| | - Chengbi Cui
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education Yanbian University Yanji China
- Food Science and Engineering, Agricultural College Yanbian University Yanji China
- Food Processing and Safety, Agricultural College Yanbian University Yanji China
| |
Collapse
|
7
|
Xu HY, Jiao YH, Li SY, Zhu X, Wang S, Zhang YY, Wei YJ, Shen YJ, Wang W, Shen YX, Shao JT. Hepatocyte-derived MANF mitigates ethanol-induced liver steatosis in mice via enhancing ASS1 activity and activating AMPK pathway. Acta Pharmacol Sin 2023; 44:157-168. [PMID: 35655095 DOI: 10.1038/s41401-022-00920-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
Hepatic steatosis plays a detrimental role in the onset and progression of alcohol-associated liver disease (ALD). Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an evolutionarily conserved protein related to the unfolded protein response. Recent studies have demonstrated that MANF plays an important role in liver diseases. In this study, we investigated the role of MANF in ethanol-induced steatosis and the underlying mechanisms. We showed that the hepatic MANF expression was markedly upregulated in mouse model of ALD by chronic-plus-single-binge ethanol feeding. Moreover, after chronic-plus-binge ethanol feeding, hepatocyte-specific MANF knockout (HKO) mice displayed more severe hepatic steatosis and liver injury than wild-type (WT) control mice. Immunoprecipitation-coupled MS proteomic analysis revealed that arginosuccinate synthase 1 (ASS1), a rate-limiting enzyme in the urea cycle, resided in the same immunoprecipitated complex with MANF. Hepatocyte-specific MANF knockout led to decreased ASS1 activity, whereas overexpression of MANF contributed to enhanced ASS1 activity in vitro. In addition, HKO mice displayed unique urea cycle metabolite patterns in the liver with elevated ammonia accumulation after ethanol feeding. ASS1 is known to activate AMPK by generating an intracellular pool of AMP from the urea cycle. We also found that MANF supplementation significantly ameliorated ethanol-induced steatosis in vivo and in vitro by activating the AMPK signaling pathway, which was partly ASS1 dependent. This study demonstrates a new mechanism in which MANF acts as a key molecule in maintaining hepatic lipid homeostasis by enhancing ASS1 activity and uncovers an interesting link between lipid metabolism and the hepatic urea cycle under excessive alcohol exposure.
Collapse
Affiliation(s)
- Han-Yang Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China
| | - Yan-Hong Jiao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China
| | - Shi-Yu Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China
| | - Xu Zhu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China
| | - Sheng Wang
- Center for Scientific Research of Anhui Medical University, Hefei, 230032, China
| | - Yu-Yang Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China
| | - Yi-Jun Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China
| | - Yu-Jun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China
| | - Wei Wang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yu-Xian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
- Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China.
| | - Jun-Tang Shao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
- Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
8
|
Deng H, Zhang P, Gao X, Chen W, Li J, Wang F, Gu Y, Hou X. Emerging trophic activities of mesencephalic astrocyte-derived neurotrophic factor in tissue repair and regeneration. Int Immunopharmacol 2023; 114:109598. [PMID: 36538855 DOI: 10.1016/j.intimp.2022.109598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a soluble endoplasmic reticulum (ER) luminal protein and its expression and secretion can be induced by ER stress. Despite initially being classified as a neurotrophic factor, MANF has been demonstrated to have restorative and protective effects in many different cell types such as neurons, liver cells, retinal cells, cardiac myocytes, and pancreatic β cells. However, underlying molecular mechanisms are complex and remain incompletely understood. The aims of this review are to highlight the latest advances in the understanding of the trophic activities of MANF in tissue repair and regeneration as well as underlying molecular mechanisms. The structural motifs and immune modulation of MANF are also described. We therefore propose that MANF might be a promising therapeutic target for tissue repair.
Collapse
Affiliation(s)
- Haiyan Deng
- School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Pingping Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, PR China
| | - Xianxian Gao
- School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Weiyi Chen
- School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Jianing Li
- School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Fuyan Wang
- School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China; Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, 266000, PR China
| | - Yiyue Gu
- Department of Cardiology, Xuzhou No.1 Peoples Hospital, Xuzhou, PR China
| | - Xin Hou
- School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China; The Affiliated Hospital of Medical School, Ningbo University, Ningbo, PR China.
| |
Collapse
|
9
|
Liu YY, Huo D, Zeng LT, Fan GQ, Shen T, Zhang TM, Cai JP, Cui J. Mesencephalic astrocyte-derived neurotrophic factor (MANF): Structure, functions and therapeutic potential. Ageing Res Rev 2022; 82:101763. [PMID: 36272696 DOI: 10.1016/j.arr.2022.101763] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/18/2022] [Accepted: 10/15/2022] [Indexed: 01/31/2023]
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a novel evolutionarily conserved protein present in both vertebrate and invertebrate species. MANF shows distinct structural and functional properties than the traditional neurotrophic factors (NTF). MANF is composed of an N-terminal saposin-like lipid-binding domain and a C-terminal SAF-A/B, Acinus and PIAS (SAP) domain connected by a short linker. The two well-described activities of MANF include (1) role as a neurotrophic factor that plays direct neuroprotective effects in the nervous system and (2) cell protective effects in the animal models of non-neuronal diseases, including retinal damage, diabetes mellitus, liver injury, myocardial infarction, nephrotic syndrome, etc. The main objective of the current review is to provide up-to-date insights regarding the structure of MANF, mechanisms regulating its expression and secretion, physiological functions in various tissues and organs, protective effects during aging, and potential clinical applications. Together, this review highlights the importance of MANF in reversing age-related dysfunction and geroprotection.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, PR China
| | - Da Huo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, PR China
| | - Lv-Tao Zeng
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, PR China
| | - Guo-Qing Fan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, PR China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, PR China
| | - Tie-Mei Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, PR China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, PR China.
| | - Ju Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, PR China.
| |
Collapse
|
10
|
Yan J, Liu Q, Tang Q, Zhang J, Jing X, Xia Y, Xu Y, Li J, Li Y, He J. Mesencephalic astrocyte-derived neurotrophic factor alleviates non-alcoholic steatohepatitis induced by Western diet in mice. FASEB J 2022; 36:e22349. [PMID: 35567505 DOI: 10.1096/fj.202101975r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 02/05/2023]
Abstract
Excessive lipid accumulation, inflammation, and fibrosis in the liver are the major characteristics of non-alcoholic steatohepatitis (NASH). Mesencephalic astrocyte-derived neurotrophic factor (MANF) plays an important role in metabolic homeostasis, raising the possibility that it is involved in NASH. Here, we reduced and increased MANF levels in mice in order to explore its influence on hepatic triglyceride homeostasis, inflammation, and fibrosis during NASH progression. The MANF expression was decreased in Western diet-induced NASH mice. In vivo, liver-specific MANF knockout exacerbated hepatic lipid accumulation, inflammation, and fibrosis of mice induced by Western diet, while liver-specific MANF overexpression mitigated these NASH pathogenic features. In vitro, knocking down MANF in primary hepatocyte cultures aggravated hepatic steatosis and inflammation, which MANF overexpression markedly attenuated. Studies in vitro and in vivo suggested that MANF regulated hepatic lipid synthesis by modulating SREBP1 expression. Inhibiting SREBP1 in primary hepatocytes blocked lipid accumulation after MANF knockdown. MANF overexpression reversed LXRs agonist GW3965 induced SREBP1 and LIPIN1 expression. MANF decreased the expression of pro-inflammatory cytokines by inhibiting NF-κB phosphorylation. These results suggest that MANF can protect against NASH by regulating SREBP1 expression and NF-κB signaling.
Collapse
Affiliation(s)
- Jiamin Yan
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Tang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Zhang
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiandan Jing
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Xia
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Xu
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiahui Li
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhan He
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|