1
|
Uyeda TQP, Yamazaki Y, Kijima ST, Noguchi TQP, Ngo KX. Multiple Mechanisms to Regulate Actin Functions: "Fundamental" Versus Lineage-Specific Mechanisms and Hierarchical Relationships. Biomolecules 2025; 15:279. [PMID: 40001582 PMCID: PMC11853071 DOI: 10.3390/biom15020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Eukaryotic actin filaments play a central role in numerous cellular functions, with each function relying on the interaction of actin filaments with specific actin-binding proteins. Understanding the mechanisms that regulate these interactions is key to uncovering how actin filaments perform diverse roles at different cellular locations. Several distinct classes of actin regulatory mechanisms have been proposed and experimentally supported. However, these mechanisms vary in their nature and hierarchy. For instance, some operate under the control of others, highlighting hierarchical relationships. Additionally, while certain mechanisms are fundamental and ubiquitous across eukaryotes, others are lineage-specific. Here, we emphasize the fundamental importance and functional significance of the following actin regulatory mechanisms: the biochemical regulation of actin nucleators, the ATP hydrolysis-dependent aging of actin filaments, thermal fluctuation- and mechanical strain-dependent conformational changes of actin filaments, and cooperative conformational changes induced by actin-binding proteins.
Collapse
Affiliation(s)
- Taro Q. P. Uyeda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Shinjuku, Japan
| | - Yosuke Yamazaki
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Kanagawa, Japan;
| | - Saku T. Kijima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Ibaraki, Japan;
| | - Taro Q. P. Noguchi
- Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, Miyakonojo 885-0006, Miyazaki, Japan;
| | - Kien Xuan Ngo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan;
| |
Collapse
|
2
|
Hayakawa Y, Takaine M, Ngo KX, Imai T, Yamada MD, Behjat AB, Umeda K, Hirose K, Yurtsever A, Kodera N, Tokuraku K, Numata O, Fukuma T, Ando T, Nakano K, Uyeda TQ. Actin-binding domain of Rng2 sparsely bound on F-actin strongly inhibits actin movement on myosin II. Life Sci Alliance 2023; 6:e202201469. [PMID: 36288901 PMCID: PMC9610768 DOI: 10.26508/lsa.202201469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/04/2022] Open
Abstract
We report a case in which sub-stoichiometric binding of an actin-binding protein has profound structural and functional consequences, providing an insight into the fundamental properties of actin regulation. Rng2 is an IQGAP contained in contractile rings in the fission yeast Schizosaccharomyces pombe Here, we used high-speed atomic force microscopy and electron microscopy and found that sub-stoichiometric binding of the calponin-homology actin-binding domain of Rng2 (Rng2CHD) induces global structural changes in skeletal muscle actin filaments, including shortening of the filament helical pitch. Sub-stoichiometric binding of Rng2CHD also reduced the affinity between actin filaments and muscle myosin II carrying ADP and strongly inhibited the motility of actin filaments on myosin II in vitro. On skeletal muscle myosin II-coated surfaces, Rng2CHD stopped the actin movements at a binding ratio of 11%. Rng2CHD also inhibited actin movements on myosin II of the amoeba Dictyostelium, but in this case, by detaching actin filaments from myosin II-coated surfaces. Thus, sparsely bound Rng2CHD induces apparently cooperative structural changes in actin filaments and inhibits force generation by actomyosin II.
Collapse
Affiliation(s)
- Yuuki Hayakawa
- Department of Physics, Faculty of Science and Engineering, Graduate School of Waseda University, Shinjuku, Japan
| | - Masak Takaine
- Department of Biology, Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Kien Xuan Ngo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Taiga Imai
- Department of Applied Sciences, Muroran Institute of Technology, Muroran, Japan
| | - Masafumi D Yamada
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Arash Badami Behjat
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Kenichi Umeda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Keiko Hirose
- Department of Biology, Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Ayhan Yurtsever
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Noriyuki Kodera
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Kiyotaka Tokuraku
- Department of Applied Sciences, Muroran Institute of Technology, Muroran, Japan
| | - Osamu Numata
- Department of Biology, Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Kentaro Nakano
- Department of Biology, Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Taro Qp Uyeda
- Department of Physics, Faculty of Science and Engineering, Graduate School of Waseda University, Shinjuku, Japan
- Department of Biology, Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| |
Collapse
|
3
|
Actin-Binding Proteins in Cardiac Hypertrophy. Cells 2022; 11:cells11223566. [PMID: 36428995 PMCID: PMC9688942 DOI: 10.3390/cells11223566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The heart reacts to a large number of pathological stimuli through cardiac hypertrophy, which finally can lead to heart failure. However, the molecular mechanisms of cardiac hypertrophy remain elusive. Actin participates in the formation of highly differentiated myofibrils under the regulation of actin-binding proteins (ABPs), which provides a structural basis for the contractile function and morphological change in cardiomyocytes. Previous studies have shown that the functional abnormality of ABPs can contribute to cardiac hypertrophy. Here, we review the function of various actin-binding proteins associated with the development of cardiac hypertrophy, which provides more references for the prevention and treatment of cardiomyopathy.
Collapse
|
4
|
Abstract
The super-resolution imaging technique of structured illumination microscopy (SIM) enables the mixing of high-frequency information into the optical transmission domain via light-source modulation, thus breaking the optical diffraction limit. Correlative SIM, which combines other techniques with SIM, offers more versatility or higher imaging resolution than traditional SIM. In this review, we first briefly introduce the imaging mechanism and development trends of conventional SIM. Then, the principles and recent developments of correlative SIM techniques are reviewed. Finally, the future development directions of SIM and its correlative microscopies are presented.
Collapse
|