1
|
Wen J, Campbell S, Moore J, Lehman W, Rynkiewicz M. Screening single nucleotide changes to tropomyosin to identify novel cardiomyopathy mutants. J Mol Cell Cardiol 2025; 203:82-90. [PMID: 40268117 DOI: 10.1016/j.yjmcc.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
Inherited cardiomyopathy is a broad class of heart disease that includes pathological cardiac remodeling such as hypertrophic and dilated cardiomyopathy, affecting 1/250-1/500 people worldwide. In many cases, mutations in proteins that make up the sarcomere, the basic subcellular unit of contraction, alter thin filament regulation and are the root cause of hypertrophic and dilated cardiomyopathy. Initially, compensations can maintain cardiac function, so patients may remain asymptomatic for years before a major cardiac episode. Early therapeutic intervention could rescue the deleterious effects of mutations thereby avoiding pathological remodeling, so prediction of potential outcomes and severity of as yet uncharacterized and known mutants of uncertain significance is critical. To accomplish this goal, we begin with the structure of the thin filament containing actin, tropomyosin, and troponin in its regulatory B- and C-states, incorporate all potential single nucleotide mutations to the tropomyosin sequence (over 1700 unique mutations), and then measure the interaction energy between tropomyosin and actin after energy minimization. Analysis of the database thus generated shows the tropomyosin residues resulting in large changes in tropomyosin-actin interaction, and therefore most likely to be deleterious to function. Some of these mutants have been observed in human patients, whereas others are novel. Global analysis further refines hotspots of mutation-sensitive, coiled-coil tropomyosin residues affecting actin interactions. Altogether, the database will allow research to focus in great depth on key candidates for functional analysis, for instance, by assaying in vitro motility and engineered heart tissue mechanics and assessing outcomes in animal models.
Collapse
Affiliation(s)
- Jian Wen
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Stuart Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Jeffrey Moore
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - William Lehman
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Michael Rynkiewicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
2
|
Barry ME, Rynkiewicz MJ, Wen J, Tu AY, Regnier M, Lehman W, Moore JR. Dual role of Tropomyosin-R160 in thin filament regulation: Insights into phosphorylation-dependent cardiac relaxation and cardiomyopathy mechanisms. Arch Biochem Biophys 2025; 768:110380. [PMID: 40057222 DOI: 10.1016/j.abb.2025.110380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
β-adrenergic stimulation causes cell signaling that targets modulation of calcium levels as well as sarcomeric proteins to increases contractility. PKA phosphorylation of serine residues 23 and 24 of troponin I reduces calcium sensitivity and promotes cardiac relaxation. Our protein-protein docking and molecular dynamics studies revealed that Tpm-R160 is adjacent to these phosphorylation sites. In addition, Tpm-R160 has been identified as a disease-causing mutation site. Here, we investigated Tpm-R160's role in thin filament regulation and its interaction with phosphorylated TnI. Using invitro motility assays, calcium sensitivity was quantified in reconstituted thin filaments containing various combinations of a phosphomimetic version of troponin I (TnI-S23/24D) and tropomyosin where the charge and potential for electrostatic interaction was removed by mutation of Tpm-R160 to a neutral alanine (Tpm-R160A). As expected, the phosphomimetic TnI (TnI-S23/24D) reduced calcium sensitivity in thin filaments with wild-type tropomyosin. However, the phosphorylation-like effect was diminished in the presence of the Tpm-R160A mutation. Notably, Tpm-R160A alone, when paired with wild-type TnI, also showed reduced calcium sensitivity, indicating that mutation of Tpm-R160 affects thin filament regulation in the absence of phosphorylation. Our findings indicate that Tpm-R160 has a dual role in thin filament regulation: (1)it is crucial for proper interaction between phosphorylated TnI and Tpm-R160 during adrenergic-induced cardiac relaxation, and (2) at the same time, the arginine residue itself is additionally required for maintenance of overall calcium sensitivity. These results provide key insight into the molecular defects underlying cardiomyopathy and a framework for development of therapeutic strategies targeting Tpm-R160 interactions. (249 words).
Collapse
Affiliation(s)
- Meaghan E Barry
- University of Massachusetts Lowell, Department of Biological Sciences, One University Ave, Lowell, MA 01854, USA
| | - Michael J Rynkiewicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, 700 Albany Street, Boston, MA, 02118, USA
| | - Jian Wen
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, 700 Albany Street, Boston, MA, 02118, USA
| | - An-Yue Tu
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA, 98195-506, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA, 98195-506, USA
| | - William Lehman
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, 700 Albany Street, Boston, MA, 02118, USA
| | - Jeffrey R Moore
- University of Massachusetts Lowell, Department of Biological Sciences, One University Ave, Lowell, MA 01854, USA.
| |
Collapse
|
3
|
Sargent R, Liu DH, Yadav R, Glennenmeier D, Bradford C, Urbina N, Beck MR. Integrated structural model of the palladin-actin complex using XL-MS, docking, NMR, and SAXS. Protein Sci 2025; 34:e70122. [PMID: 40248864 PMCID: PMC12006749 DOI: 10.1002/pro.70122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 04/19/2025]
Abstract
Palladin is an actin-binding protein that accelerates actin polymerization and is linked to the metastasis of several types of cancer. Previously, three lysine residues in an immunoglobulin-like domain of palladin have been identified as essential for actin binding. However, it is still unknown where palladin binds to F-actin. Evidence that palladin binds to the sides of actin filaments to facilitate branching is supported by our previous study showing that palladin was able to compensate for Arp2/3 in the formation of Listeria actin comet tails. Here, we used chemical crosslinking to covalently link palladin and F-actin residues based on spatial proximity. Samples were then enzymatically digested, separated by liquid chromatography, and analyzed by tandem mass spectrometry. Peptides containing the crosslinks and specific residues involved were then identified for input to the HADDOCK docking server to model the most likely binding conformation. Small-angle x-ray scattering was used to provide further insight into palladin flexibility and the binding interface, and NMR spectra identified potential interactions between palladin's Ig domains. Our final structural model of the F-actin:palladin complex revealed how palladin interacts with and stabilizes F-actin at the interface between two actin monomers. Three actin residues that were identified in this study also appear commonly in the actin-binding interface with other proteins such as myotilin, myosin, and tropomodulin. An accurate structural representation of the complex between palladin and actin extends our understanding of palladin's role in promoting cancer metastasis through the regulation of actin dynamics.
Collapse
Affiliation(s)
- Rachel Sargent
- Department of Chemistry and BiochemistryWichita State UniversityWichitaKansasUSA
| | - David H. Liu
- Department of Chemistry and BiochemistryWichita State UniversityWichitaKansasUSA
| | - Rahul Yadav
- Department of Chemistry and BiochemistryWichita State UniversityWichitaKansasUSA
- Chemistry DepartmentUniversity of Arkansas‐Fort SmithFort SmithArkansasUSA
| | - Drew Glennenmeier
- Department of Chemistry and BiochemistryWichita State UniversityWichitaKansasUSA
| | - Colby Bradford
- Department of Chemistry and BiochemistryWichita State UniversityWichitaKansasUSA
| | - Noely Urbina
- Department of Chemistry and BiochemistryWichita State UniversityWichitaKansasUSA
| | - Moriah R. Beck
- Department of Chemistry and BiochemistryWichita State UniversityWichitaKansasUSA
| |
Collapse
|
4
|
Ramachandran B, Rynkiewicz M, Lehman W. Velcro-binding by cardiac troponin-I traps tropomyosin on actin in a low-energy relaxed state. Biochem Biophys Res Commun 2025; 757:151595. [PMID: 40088678 PMCID: PMC11938286 DOI: 10.1016/j.bbrc.2025.151595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
During muscle relaxation at low sarcoplasmic Ca2+-concentration, the 40-nm long tropomyosin coiled coil is attracted by the C-terminal regulatory domain of troponin subunit-I to a "steric-blocking" B-state position on actin subunits of cardiac and skeletal muscle thin filaments. Tropomyosin located in this B-state position obstructs myosin-binding sites on actin, limiting access of myosin-crossbridge heads on actin. In turn, the steric-hindrance imposed on myosin-binding diminishes actomyosin ATPase, crossbridge movement along actin, and contractility, thus causing relaxation. In contrast, during muscle activation, at high sarcoplasmic Ca2+ levels, the troponin-induced tropomyosin interference is relieved, the tropomyosin coiled coil returns to its default C-state position on actin, and contractility proceeds. In the current study, we examined the energetics associated with tropomyosin's shift in position from its C-state to its B-state on actin and the influence of troponin-I on this relaxed state transition. Control studies showed that in the absence of troponin, the free energy difference between B- and C-state positions of tropomyosin on actin is negligible, i.e. neither B- nor C-state is obviously preferred on troponin-free actin. In contrast, widely separated sites along the C-terminal regulatory domain of troponin-I are responsible for a favorable free energy change of about -0.75 kcal/mol, driving the tropomyosin C-state to B-state shift. Corresponding truncation and point mutations along C-terminal region of TnI lead to a less favorable regulatory transition and are linked to cardiac muscle dysfunction.
Collapse
Affiliation(s)
- Balajee Ramachandran
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, United States
| | - Michael Rynkiewicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, United States
| | - William Lehman
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, United States.
| |
Collapse
|
5
|
Ragusa R, Caselli C. Focus on cardiac troponin complex: From gene expression to cardiomyopathy. Genes Dis 2024; 11:101263. [PMID: 39211905 PMCID: PMC11357864 DOI: 10.1016/j.gendis.2024.101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/26/2024] [Accepted: 02/21/2024] [Indexed: 09/04/2024] Open
Abstract
The cardiac troponin complex (cTn) is a regulatory component of sarcomere. cTn consists of three subunits: cardiac troponin C (cTnC), which confers Ca2+ sensitivity to muscle; cTnI, which inhibits the interaction of cross-bridge of myosin with thin filament during diastole; and cTnT, which has multiple roles in sarcomere, such as promoting the link between the cTnI-cTnC complex and tropomyosin within the thin filament and influencing Ca2+ sensitivity of cTn and force development during contraction. Conditions that interfere with interactions within cTn and/or other thin filament proteins can be key factors in the regulation of cardiac contraction. These conditions include alterations in myofilament Ca2+ sensitivity, direct changes in cTn function, and triggering downstream events that lead to adverse cardiac remodeling and impairment of heart function. This review describes gene expression and post-translational modifications of cTn as well as the conditions that can adversely affect the delicate balance among the components of cTn, thereby promoting contractile dysfunction.
Collapse
Affiliation(s)
- Rosetta Ragusa
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa 56124, Italy
| | - Chiara Caselli
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa 56124, Italy
- Fondazione Toscana Gabriele Monasterio, via Moruzzi 1, Pisa 56124, Italy
| |
Collapse
|
6
|
Sargent R, Liu DH, Yadav R, Glennenmeier D, Bradford C, Urbina N, Beck MR. Integrated structural model of the palladin-actin complex using XL-MS, docking, NMR, and SAXS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.25.609580. [PMID: 39229147 PMCID: PMC11370566 DOI: 10.1101/2024.08.25.609580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Palladin is an actin binding protein that accelerates actin polymerization and is linked to metastasis of several types of cancer. Previously, three lysine residues in an immunoglobulin-like domain of palladin have been identified as essential for actin binding. However, it is still unknown where palladin binds to F-actin. Evidence that palladin binds to the sides of actin filaments to facilitate branching is supported by our previous study showing that palladin was able to compensate for Arp2/3 in the formation of Listeria actin comet tails. Here, we used chemical crosslinking to covalently link palladin and F-actin residues based on spatial proximity. Samples were then enzymatically digested, separated by liquid chromatography, and analyzed by tandem mass spectrometry. Peptides containing the crosslinks and specific residues involved were then identified for input to HADDOCK docking server to model the most likely binding conformation. Small angle X-ray scattering was used to provide further insight into palladin flexibility and the binding interface, and NMR spectra identified potential interactions between palladin's Ig domains. Our final structural model of the F-actin:palladin complex revealed how palladin interacts with and stabilizes F-actin at the interface between two actin monomers. Three actin residues that were identified in this study also appear commonly in the actin binding interface with other proteins such as myotilin, myosin, and tropomodulin. An accurate structural representation of the complex between palladin and actin extends our understanding of palladin's role in promoting cancer metastasis through regulation of actin dynamics. Significance In this study we have combined various advanced structural biology techniques to provide the first comprehensive model of the palladin-actin complex. Considering palladin's role in cancer cell metastasis, this structure could be useful in screening and developing chemotherapeutic agents that target this interaction and prevent cancer cell metastasis.
Collapse
|
7
|
Delligatti CE, Kirk JA. Glycation in the cardiomyocyte. VITAMINS AND HORMONES 2024; 125:47-88. [PMID: 38997172 PMCID: PMC11578284 DOI: 10.1016/bs.vh.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Glycation is a protein post-translational modification that can occur on lysine and arginine residues as a result of a non-enzymatic process known as the Maillard reaction. This modification is irreversible, so the only way it can be removed is by protein degradation and replacement. Small reactive carbonyl species, glyoxal and methylglyoxal, are the primary glycating agents and are elevated in several conditions associated with an increased risk of cardiovascular disease, including diabetes, rheumatoid arthritis, smoking, and aging. Thus, how protein glycation impacts the cardiomyocyte is of particular interest, to both understand how these conditions increase the risk of cardiovascular disease and how glycation might be targeted therapeutically. Glycation can affect the cardiomyocyte through extracellular mechanisms, including RAGE-based signaling, glycation of the extracellular matrix that modifies the mechanical environment, and signaling from the vasculature. Intracellular glycation of the cardiomyocyte can impact calcium handling, protein quality control and cell death pathways, as well as the cytoskeleton, resulting in a blunted contractility. While reducing protein glycation and its impact on the heart has been an active area of drug development, multiple clinical trials have had mixed results and these compounds have not been translated to the clinic-highlighting the challenges of modulating myocyte glycation. Here we will review protein glycation and its effects on the cardiomyocyte, therapeutic attempts to reverse these, and offer insight as to the future of glycation studies and patient treatment.
Collapse
Affiliation(s)
- Christine E Delligatti
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States.
| |
Collapse
|
8
|
Rynkiewicz MJ, Childers MC, Karpicheva OE, Regnier M, Geeves MA, Lehman W. Myosin's powerstroke transitions define atomic scale movement of cardiac thin filament tropomyosin. J Gen Physiol 2024; 156:e202413538. [PMID: 38607351 PMCID: PMC11010328 DOI: 10.1085/jgp.202413538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/27/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
Dynamic interactions between the myosin motor head on thick filaments and the actin molecular track on thin filaments drive the myosin-crossbridge cycle that powers muscle contraction. The process is initiated by Ca2+ and the opening of troponin-tropomyosin-blocked myosin-binding sites on actin. The ensuing recruitment of myosin heads and their transformation from pre-powerstroke to post-powerstroke conformation on actin produce the force required for contraction. Cryo-EM-based atomic models confirm that during this process, tropomyosin occupies three different average positions on actin. Tropomyosin pivoting on actin away from a TnI-imposed myosin-blocking position accounts for part of the Ca2+ activation observed. However, the structure of tropomyosin on thin filaments that follows pre-powerstroke myosin binding and its translocation during myosin's pre-powerstroke to post-powerstroke transition remains unresolved. Here, we approach this transition computationally in silico. We used the myosin helix-loop-helix motif as an anchor to dock models of pre-powerstroke cardiac myosin to the cleft between neighboring actin subunits along cardiac thin filaments. We then performed targeted molecular dynamics simulations of the transition between pre- and post-powerstroke conformations on actin in the presence of cardiac troponin-tropomyosin. These simulations show Arg 369 and Glu 370 on the tip of myosin Loop-4 encountering identically charged residues on tropomyosin. The charge repulsion between residues causes tropomyosin translocation across actin, thus accounting for the final regulatory step in the activation of the thin filament, and, in turn, facilitating myosin movement along the filament. We suggest that during muscle activity, myosin-induced tropomyosin movement is likely to result in unencumbered myosin head interactions on actin at low-energy cost.
Collapse
Affiliation(s)
- Michael J. Rynkiewicz
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | | | - Olga E. Karpicheva
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | - William Lehman
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
9
|
Risi CM, Belknap B, Atherton J, Coscarella IL, White HD, Bryant Chase P, Pinto JR, Galkin VE. Troponin Structural Dynamics in the Native Cardiac Thin Filament Revealed by Cryo Electron Microscopy. J Mol Biol 2024; 436:168498. [PMID: 38387550 PMCID: PMC11007730 DOI: 10.1016/j.jmb.2024.168498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Cardiac muscle contraction occurs due to repetitive interactions between myosin thick and actin thin filaments (TF) regulated by Ca2+ levels, active cross-bridges, and cardiac myosin-binding protein C (cMyBP-C). The cardiac TF (cTF) has two nonequivalent strands, each comprised of actin, tropomyosin (Tm), and troponin (Tn). Tn shifts Tm away from myosin-binding sites on actin at elevated Ca2+ levels to allow formation of force-producing actomyosin cross-bridges. The Tn complex is comprised of three distinct polypeptides - Ca2+-binding TnC, inhibitory TnI, and Tm-binding TnT. The molecular mechanism of their collective action is unresolved due to lack of comprehensive structural information on Tn region of cTF. C1 domain of cMyBP-C activates cTF in the absence of Ca2+ to the same extent as rigor myosin. Here we used cryo-EM of native cTFs to show that cTF Tn core adopts multiple structural conformations at high and low Ca2+ levels and that the two strands are structurally distinct. At high Ca2+ levels, cTF is not entirely activated by Ca2+ but exists in either partially or fully activated state. Complete dissociation of TnI C-terminus is required for full activation. In presence of cMyBP-C C1 domain, Tn core adopts a fully activated conformation, even in absence of Ca2+. Our data provide a structural description for the requirement of myosin to fully activate cTFs and explain increased affinity of TnC to Ca2+ in presence of active cross-bridges. We suggest that allosteric coupling between Tn subunits and Tm is required to control actomyosin interactions.
Collapse
Affiliation(s)
- Cristina M Risi
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Betty Belknap
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Jennifer Atherton
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Isabella Leite Coscarella
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Howard D White
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| |
Collapse
|
10
|
Barry ME, Rynkiewicz MJ, Pavadai E, Viana A, Lehman W, Moore JR. Glutamate 139 of tropomyosin is critical for cardiac thin filament blocked-state stabilization. J Mol Cell Cardiol 2024; 188:30-37. [PMID: 38266978 PMCID: PMC11654406 DOI: 10.1016/j.yjmcc.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/14/2023] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
The cardiac thin filament proteins troponin and tropomyosin control actomyosin formation and thus cardiac contractility. Calcium binding to troponin changes tropomyosin position along the thin filament, allowing myosin head binding to actin required for heart muscle contraction. The thin filament regulatory proteins are hot spots for genetic mutations causing heart muscle dysfunction. While much of the thin filament structure has been characterized, critical regions of troponin and tropomyosin involved in triggering conformational changes remain unresolved. A poorly resolved region, helix-4 (H4) of troponin I, is thought to stabilize tropomyosin in a position on actin that blocks actomyosin interactions at low calcium concentrations during muscle relaxation. We have proposed that contact between glutamate 139 on tropomyosin and positively charged residues on H4 leads to blocking-state stabilization. In this study, we attempted to disrupt these interactions by replacing E139 with lysine (E139K) to define the importance of this residue in thin filament regulation. Comparison of mutant and wild-type tropomyosin was carried out using in-vitro motility assays, actin co-sedimentation, and molecular dynamics simulations to determine perturbations in troponin-tropomyosin function caused by the tropomyosin mutation. Motility assays revealed that mutant thin filaments moved at higher velocity at low calcium with increased calcium sensitivity demonstrating that tropomyosin residue 139 is vital for proper tropomyosin-mediated inhibition during relaxation. Similarly, molecular dynamic simulations revealed a mutation-induced decrease in interaction energy between tropomyosin-E139K and troponin I (R170 and K174). These results suggest that salt-bridge stabilization of tropomyosin position by troponin IH4 is essential to prevent actomyosin interactions during cardiac muscle relaxation.
Collapse
Affiliation(s)
- Meaghan E Barry
- Department of Biological Sciences, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, United States of America
| | - Michael J Rynkiewicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisan School of Medicine, 700 Albany Street, W-408E, Boston, MA 02118, United States of America
| | - Elumalai Pavadai
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisan School of Medicine, 700 Albany Street, W-408E, Boston, MA 02118, United States of America
| | - Alex Viana
- Department of Biological Sciences, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, United States of America
| | - William Lehman
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisan School of Medicine, 700 Albany Street, W-408E, Boston, MA 02118, United States of America
| | - Jeffrey R Moore
- Department of Biological Sciences, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, United States of America.
| |
Collapse
|
11
|
Janssens JV, Raaijmakers AJA, Weeks KL, Bell JR, Mellor KM, Curl CL, Delbridge LMD. The cardiomyocyte origins of diastolic dysfunction: cellular components of myocardial "stiffness". Am J Physiol Heart Circ Physiol 2024; 326:H584-H598. [PMID: 38180448 DOI: 10.1152/ajpheart.00334.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The impaired ability of the heart to relax and stretch to accommodate venous return is generally understood to represent a state of "diastolic dysfunction" and often described using the all-purpose noun "stiffness." Despite the now common qualitative usage of this term in fields of cardiac patho/physiology, the specific quantitative concept of stiffness as a molecular and biophysical entity with real practical interpretation in healthy and diseased hearts is sometimes obscure. The focus of this review is to characterize the concept of cardiomyocyte stiffness and to develop interpretation of "stiffness" attributes at the cellular and molecular levels. Here, we consider "stiffness"-related terminology interpretation and make links between cardiomyocyte stiffness and aspects of functional and structural cardiac performance. We discuss cross bridge-derived stiffness sources, considering the contributions of diastolic myofilament activation and impaired relaxation. This includes commentary relating to the role of cardiomyocyte Ca2+ flux and Ca2+ levels in diastole, the troponin-tropomyosin complex role as a Ca2+ effector in diastole, the myosin ADP dissociation rate as a modulator of cross bridge attachment and regulation of cross-bridge attachment by myosin binding protein C. We also discuss non-cross bridge-derived stiffness sources, including the titin sarcomeric spring protein, microtubule and intermediate filaments, and cytoskeletal extracellular matrix interactions. As the prevalence of conditions involving diastolic heart failure has escalated, a more sophisticated understanding of the molecular, cellular, and tissue determinants of cardiomyocyte stiffness offers potential to develop imaging and molecular intervention tools.
Collapse
Affiliation(s)
- Johannes V Janssens
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Antonia J A Raaijmakers
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kate L Weeks
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Monash University, Parkville, Victoria, Australia
| | - James R Bell
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
| | - Kimberley M Mellor
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Claire L Curl
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Lea M D Delbridge
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Abstract
Force generation in striated muscle is primarily controlled by structural changes in the actin-containing thin filaments triggered by an increase in intracellular calcium concentration. However, recent studies have elucidated a new class of regulatory mechanisms, based on the myosin-containing thick filament, that control the strength and speed of contraction by modulating the availability of myosin motors for the interaction with actin. This review summarizes the mechanisms of thin and thick filament activation that regulate the contractility of skeletal and cardiac muscle. A novel dual-filament paradigm of muscle regulation is emerging, in which the dynamics of force generation depends on the coordinated activation of thin and thick filaments. We highlight the interfilament signaling pathways based on titin and myosin-binding protein-C that couple thin and thick filament regulatory mechanisms. This dual-filament regulation mediates the length-dependent activation of cardiac muscle that underlies the control of the cardiac output in each heartbeat.
Collapse
Affiliation(s)
- Elisabetta Brunello
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom; ,
| | - Luca Fusi
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom; ,
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| |
Collapse
|
13
|
Lambert MR, Gussoni E. Tropomyosin 3 (TPM3) function in skeletal muscle and in myopathy. Skelet Muscle 2023; 13:18. [PMID: 37936227 PMCID: PMC10629095 DOI: 10.1186/s13395-023-00327-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
The tropomyosin genes (TPM1-4) contribute to the functional diversity of skeletal muscle fibers. Since its discovery in 1988, the TPM3 gene has been recognized as an indispensable regulator of muscle contraction in slow muscle fibers. Recent advances suggest that TPM3 isoforms hold more extensive functions during skeletal muscle development and in postnatal muscle. Additionally, mutations in the TPM3 gene have been associated with the features of congenital myopathies. The use of different in vitro and in vivo model systems has leveraged the discovery of several disease mechanisms associated with TPM3-related myopathy. Yet, the precise mechanisms by which TPM3 mutations lead to muscle dysfunction remain unclear. This review consolidates over three decades of research about the role of TPM3 in skeletal muscle. Overall, the progress made has led to a better understanding of the phenotypic spectrum in patients affected by mutations in this gene. The comprehensive body of work generated over these decades has also laid robust groundwork for capturing the multiple functions this protein plays in muscle fibers.
Collapse
Affiliation(s)
- Matthias R Lambert
- Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| | - Emanuela Gussoni
- Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- The Stem Cell Program, Boston Children's Hospital, Boston, MA, 02115, USA
| |
Collapse
|
14
|
Matyushenko AM, Nefedova VV, Kochurova AM, Kopylova GV, Koubassova NA, Shestak AG, Yampolskaya DS, Shchepkin DV, Kleymenov SY, Ryabkova NS, Katrukha IA, Bershitsky SY, Zaklyazminskaya EV, Tsaturyan AK, Levitsky DI. Novel Mutation Glu98Lys in Cardiac Tropomyosin Alters Its Structure and Impairs Myocardial Relaxation. Int J Mol Sci 2023; 24:12359. [PMID: 37569730 PMCID: PMC10419091 DOI: 10.3390/ijms241512359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
We characterized a novel genetic variant c.292G > A (p.E98K) in the TPM1 gene encoding cardiac tropomyosin 1.1 isoform (Tpm1.1), found in a proband with a phenotype of complex cardiomyopathy with conduction dysfunction and slow progressive neuromuscular involvement. To understand the molecular mechanism by which this mutation impairs cardiac function, we produced recombinant Tpm1.1 carrying an E98K substitution and studied how this substitution affects the structure of the Tpm1.1 molecule and its functional properties. The results showed that the E98K substitution in the N-terminal part of the Tpm molecule significantly destabilizes the C-terminal part of Tpm, thus indicating a long-distance destabilizing effect of the substitution on the Tpm coiled-coil structure. The E98K substitution did not noticeably affect Tpm's affinity for F-actin but significantly impaired Tpm's regulatory properties. It increased the Ca2+ sensitivity of the sliding velocity of regulated thin filaments over cardiac myosin in an in vitro motility assay and caused an incomplete block of the thin filament sliding at low Ca2+ concentrations. The incomplete motility block in the absence of Ca2+ can be explained by the loosening of the Tpm interaction with troponin I (TnI), thus increasing Tpm mobility on the surface of an actin filament that partially unlocks the myosin binding sites. This hypothesis is supported by the molecular dynamics (MD) simulation that showed that the E98 Tpm residue is involved in hydrogen bonding with the C-terminal part of TnI. Thus, the results allowed us to explain the mechanism by which the E98K Tpm mutation impairs sarcomeric function and myocardial relaxation.
Collapse
Affiliation(s)
- Alexander M. Matyushenko
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (A.M.M.); (V.V.N.); (D.S.Y.); (S.Y.K.)
| | - Victoria V. Nefedova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (A.M.M.); (V.V.N.); (D.S.Y.); (S.Y.K.)
| | - Anastasia M. Kochurova
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg 620049, Russia; (A.M.K.); (G.V.K.); (D.V.S.); (S.Y.B.)
| | - Galina V. Kopylova
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg 620049, Russia; (A.M.K.); (G.V.K.); (D.V.S.); (S.Y.B.)
| | - Natalia A. Koubassova
- Institute of Mechanics, Moscow State University, Moscow 119192, Russia; (N.A.K.); (A.K.T.)
| | - Anna G. Shestak
- Petrovsky National Research Centre of Surgery, Moscow 119991, Russia; (A.G.S.); (E.V.Z.)
| | - Daria S. Yampolskaya
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (A.M.M.); (V.V.N.); (D.S.Y.); (S.Y.K.)
| | - Daniil V. Shchepkin
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg 620049, Russia; (A.M.K.); (G.V.K.); (D.V.S.); (S.Y.B.)
| | - Sergey Y. Kleymenov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (A.M.M.); (V.V.N.); (D.S.Y.); (S.Y.K.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Natalia S. Ryabkova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (N.S.R.); (I.A.K.)
- HyTest Ltd., 20520 Turku, Finland
| | - Ivan A. Katrukha
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (N.S.R.); (I.A.K.)
- HyTest Ltd., 20520 Turku, Finland
| | - Sergey Y. Bershitsky
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg 620049, Russia; (A.M.K.); (G.V.K.); (D.V.S.); (S.Y.B.)
| | - Elena V. Zaklyazminskaya
- Petrovsky National Research Centre of Surgery, Moscow 119991, Russia; (A.G.S.); (E.V.Z.)
- N.P. Bochkov Research Centre for Medical Genetics, Moscow 20520, Russia
| | - Andrey K. Tsaturyan
- Institute of Mechanics, Moscow State University, Moscow 119192, Russia; (N.A.K.); (A.K.T.)
| | - Dmitrii I. Levitsky
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (A.M.M.); (V.V.N.); (D.S.Y.); (S.Y.K.)
| |
Collapse
|
15
|
Lehman W, Rynkiewicz MJ. Troponin-I-induced tropomyosin pivoting defines thin-filament function in relaxed and active muscle. J Gen Physiol 2023; 155:e202313387. [PMID: 37249525 PMCID: PMC10227645 DOI: 10.1085/jgp.202313387] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Regulation of the crossbridge cycle that drives muscle contraction involves a reconfiguration of the troponin-tropomyosin complex on actin filaments. By comparing atomic models of troponin-tropomyosin fitted to cryo-EM structures of inhibited and Ca2+-activated thin filaments, we find that tropomyosin pivots rather than rolls or slides across actin as generally thought. We propose that pivoting can account for the Ca2+ activation that initiates muscle contraction and then relaxation influenced by troponin-I (TnI). Tropomyosin is well-known to occupy either of three meta-stable configurations on actin, regulating access of myosin motorheads to their actin-binding sites and thus the crossbridge cycle. At low Ca2+ concentrations, tropomyosin is trapped by TnI in an inhibitory B-state that sterically blocks myosin binding to actin, leading to muscle relaxation. Ca2+ binding to TnC draws TnI away from tropomyosin, while tropomyosin moves to a C-state location over actin. This partially relieves the steric inhibition and allows weak binding of myosin heads to actin, which then transition to strong actin-bound configurations, fully activating the thin filament. Nevertheless, the reconfiguration that accompanies the initial Ca2+-sensitive B-state/C-state shift in troponin-tropomyosin on actin remains uncertain and at best is described by moderate-resolution cryo-EM reconstructions. Our recent computational studies indicate that intermolecular residue-to-residue salt-bridge linkage between actin and tropomyosin is indistinguishable in B- and C-state thin filament configurations. We show here that tropomyosin can pivot about relatively fixed points on actin to accompany B-state/C-state structural transitions. We argue that at low Ca2+ concentrations C-terminal TnI domains attract tropomyosin, causing it to bend and then pivot toward the TnI, thus blocking myosin binding and contraction.
Collapse
Affiliation(s)
- William Lehman
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Michael J. Rynkiewicz
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
16
|
Brunello E, Marcucci L, Irving M, Fusi L. Activation of skeletal muscle is controlled by a dual-filament mechano-sensing mechanism. Proc Natl Acad Sci U S A 2023; 120:e2302837120. [PMID: 37216507 PMCID: PMC10235942 DOI: 10.1073/pnas.2302837120] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Contraction of skeletal muscle is triggered by a transient rise in intracellular calcium concentration leading to a structural change in the actin-containing thin filaments that allows binding of myosin motors from the thick filaments. Most myosin motors are unavailable for actin binding in resting muscle because they are folded back against the thick filament backbone. Release of the folded motors is triggered by thick filament stress, implying a positive feedback loop in the thick filaments. However, it was unclear how thin and thick filament activation mechanisms are coordinated, partly because most previous studies of the thin filament regulation were conducted at low temperatures where the thick filament mechanisms are inhibited. Here, we use probes on both troponin in the thin filaments and myosin in the thick filaments to monitor the activation states of both filaments in near-physiological conditions. We characterize those activation states both in the steady state, using conventional titrations with calcium buffers, and during activation on the physiological timescale, using calcium jumps produced by photolysis of caged calcium. The results reveal three activation states of the thin filament in the intact filament lattice of a muscle cell that are analogous to those proposed previously from studies on isolated proteins. We characterize the rates of the transitions between these states in relation to thick filament mechano-sensing and show how thin- and thick-filament-based mechanisms are coupled by two positive feedback loops that switch on both filaments to achieve rapid cooperative activation of skeletal muscle.
Collapse
Affiliation(s)
- Elisabetta Brunello
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences and British Heart Foundation Centre of Research Excellence, King’s College London, LondonSE1 1UL, United Kingdom
| | - Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, Padova35131, Italy
- RIKEN Centre for Biosystems Dynamics Research, Suita565-0874, Japan
| | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences and British Heart Foundation Centre of Research Excellence, King’s College London, LondonSE1 1UL, United Kingdom
| | - Luca Fusi
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences and British Heart Foundation Centre of Research Excellence, King’s College London, LondonSE1 1UL, United Kingdom
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King’s College London, LondonSE1 1UL, United Kingdom
| |
Collapse
|
17
|
Molecular Dynamics Assessment of Mechanical Properties of the Thin Filaments in Cardiac Muscle. Int J Mol Sci 2023; 24:ijms24054792. [PMID: 36902223 PMCID: PMC10003134 DOI: 10.3390/ijms24054792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Contraction of cardiac muscle is regulated by Ca2+ ions via regulatory proteins, troponin (Tn), and tropomyosin (Tpm) associated with the thin (actin) filaments in myocardial sarcomeres. The binding of Ca2+ to a Tn subunit causes mechanical and structural changes in the multiprotein regulatory complex. Recent cryo-electron microscopy (cryo-EM) models of the complex allow one to study the dynamic and mechanical properties of the complex using molecular dynamics (MD). Here we describe two refined models of the thin filament in the calcium-free state that include protein fragments unresolved by cryo-EM and reconstructed using structure prediction software. The parameters of the actin helix and the bending, longitudinal, and torsional stiffness of the filaments estimated from the MD simulations performed with these models were close to those found experimentally. However, problems revealed from the MD simulation suggest that the models require further refinement by improving the protein-protein interaction in some regions of the complex. The use of relatively long refined models of the regulatory complex of the thin filament allows one to perform MD simulation of the molecular mechanism of Ca2+ regulation of contraction without additional constraints and study the effects of cardiomyopathy-associated mutation of the thin filament proteins of cardiac muscle.
Collapse
|
18
|
Halder SS, Rynkiewicz MJ, Creso JG, Sewanan LR, Howland L, Moore JR, Lehman W, Campbell SG. Mechanisms of pathogenicity in the hypertrophic cardiomyopathy-associated TPM1 variant S215L. PNAS NEXUS 2023; 2:pgad011. [PMID: 36896133 PMCID: PMC9991458 DOI: 10.1093/pnasnexus/pgad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/12/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is an inherited disorder often caused by mutations to sarcomeric genes. Many different HCM-associated TPM1 mutations have been identified but they vary in their degrees of severity, prevalence, and rate of disease progression. The pathogenicity of many TPM1 variants detected in the clinical population remains unknown. Our objective was to employ a computational modeling pipeline to assess pathogenicity of one such variant of unknown significance, TPM1 S215L, and validate predictions using experimental methods. Molecular dynamic simulations of tropomyosin on actin suggest that the S215L significantly destabilizes the blocked regulatory state while increasing flexibility of the tropomyosin chain. These changes were quantitatively represented in a Markov model of thin-filament activation to infer the impacts of S215L on myofilament function. Simulations of in vitro motility and isometric twitch force predicted that the mutation would increase Ca2+ sensitivity and twitch force while slowing twitch relaxation. In vitro motility experiments with thin filaments containing TPM1 S215L revealed higher Ca2+ sensitivity compared with wild type. Three-dimensional genetically engineered heart tissues expressing TPM1 S215L exhibited hypercontractility, upregulation of hypertrophic gene markers, and diastolic dysfunction. These data form a mechanistic description of TPM1 S215L pathogenicity that starts with disruption of the mechanical and regulatory properties of tropomyosin, leading thereafter to hypercontractility and finally induction of a hypertrophic phenotype. These simulations and experiments support the classification of S215L as a pathogenic mutation and support the hypothesis that an inability to adequately inhibit actomyosin interactions is the mechanism whereby thin-filament mutations cause HCM.
Collapse
Affiliation(s)
- Saiti S Halder
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
| | | | - Jenette G Creso
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
| | - Lorenzo R Sewanan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
- Department of Internal Medicine, Columbia University, New York, NY 10032
| | - Lindsey Howland
- Department of Biological Sciences, University of Massachusetts Lowell, MA 01854
| | - Jeffrey R Moore
- Department of Biological Sciences, University of Massachusetts Lowell, MA 01854
| | - William Lehman
- Department of Physiology/Biophysics, Boston University, Boston, MA 02215
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
| |
Collapse
|
19
|
Doran MH, Rynkiewicz MJ, Pavadai E, Bodt SM, Rasicci D, Moore JR, Yengo CM, Bullitt E, Lehman W. Myosin loop-4 is critical for optimal tropomyosin repositioning on actin during muscle activation and relaxation. J Gen Physiol 2023; 155:e202213274. [PMID: 36459134 PMCID: PMC9723511 DOI: 10.1085/jgp.202213274] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/28/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
During force-generating steps of the muscle crossbridge cycle, the tip of the myosin motor, specifically loop-4, contacts the tropomyosin cable of actin filaments. In the current study, we determined the corresponding effect of myosin loop-4 on the regulatory positioning of tropomyosin on actin. To accomplish this, we compared high-resolution cryo-EM structures of myosin S1-decorated thin filaments containing either wild-type or a loop-4 mutant construct, where the seven-residue portion of myosin loop-4 that contacts tropomyosin was replaced by glycine residues, thus removing polar side chains from residues 366-372. Cryo-EM analysis of fully decorated actin-tropomyosin filaments with wild-type and mutant S1, yielded 3.4-3.6 Å resolution reconstructions, with even higher definition at the actin-myosin interface. Loop-4 densities both in wild-type and mutant S1 were clearly identified, and side chains were resolved in the wild-type structure. Aside from loop-4, actin and myosin structural domains were indistinguishable from each other when filaments were decorated with either mutant or wild-type S1. In marked contrast, the position of tropomyosin on actin in the two reconstructions differed by 3 to 4 Å. In maps of filaments containing the mutant, tropomyosin was located closer to the myosin-head and thus moved in the direction of the C-state conformation adopted by myosin-free thin filaments. Complementary interaction energy measurements showed that tropomyosin in the mutant thin filaments sits on actin in a local energy minimum, whereas tropomyosin is positioned by wild-type S1 in an energetically unfavorable location. We propose that the high potential energy associated with tropomyosin positioning in wild-type filaments favors an effective transition to B- and C-states following release of myosin from the thin filaments during relaxation.
Collapse
Affiliation(s)
- Matthew H. Doran
- Department of Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Michael J. Rynkiewicz
- Department of Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Elumalai Pavadai
- Department of Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Skylar M.L. Bodt
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, PA
| | - David Rasicci
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, PA
| | - Jeffrey R. Moore
- Department of Biological Science, University of Massachusetts Lowell, Lowell, MA
| | - Christopher M. Yengo
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, PA
| | - Esther Bullitt
- Department of Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - William Lehman
- Department of Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| |
Collapse
|
20
|
Prill K, Jones MR, Steffensen K, Teng GZ, Dawson JF. Increasing the calcium sensitivity of muscle using trifluoperazine-induced manipulations in silico, in vitro and in vivo systems. Arch Biochem Biophys 2023; 735:109521. [PMID: 36657606 DOI: 10.1016/j.abb.2023.109521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
Many therapeutics for cardiomyopathy treat the symptoms of the disease rather than the underlying mechanism. The mechanism of cardiomyopathy onset is believed to include two means: calcium sensitivity changes and myosin activity alteration. Trifluoperazine is a compound that binds troponin, and other components of the calcium pathway, which impacts calcium regulation of contraction. Here, the ability of TFP to shift calcium sensitivity was examined in vitro with purified proteins and the impact of TFP on heart function was assessed in vivo using embryonic zebrafish. The binding of TFP to troponin was modeled in silico and a model of zebrafish troponin was generated. TFP increased regulated cardiac actomyosin activity in vitro and elevated embryonic zebrafish heart rates at effective drug concentrations. Troponin structural changes predicted in silico suggest altered protein interactions within thin filaments that would affect the regulation of heart function.
Collapse
Affiliation(s)
- Kendal Prill
- From the Department of Molecular & Cellular Biology, University of Guelph; Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Michael R Jones
- From the Department of Molecular & Cellular Biology, University of Guelph; Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Karl Steffensen
- From the Department of Molecular & Cellular Biology, University of Guelph; Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Grace Zi Teng
- From the Department of Molecular & Cellular Biology, University of Guelph; Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - John F Dawson
- From the Department of Molecular & Cellular Biology, University of Guelph; Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
21
|
Pavadai E, Rynkiewicz MJ, Yang Z, Gould IR, Marston SB, Lehman W. Modulation of cardiac thin filament structure by phosphorylated troponin-I analyzed by protein-protein docking and molecular dynamics simulation. Arch Biochem Biophys 2022; 725:109282. [PMID: 35577070 PMCID: PMC10680062 DOI: 10.1016/j.abb.2022.109282] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 12/16/2022]
Abstract
Tropomyosin, controlled by troponin-linked Ca2+-binding, regulates muscle contraction by a macromolecular scale steric-mechanism that governs myosin-crossbridge-actin interactions. At low-Ca2+, C-terminal domains of troponin-I (TnI) trap tropomyosin in a position on thin filaments that interferes with myosin-binding, thus causing muscle relaxation. Steric inhibition is reversed at high-Ca2+ when TnI releases from F-actin-tropomyosin as Ca2+ and the TnI switch-peptide bind to the N-lobe of troponin-C (TnC). The opposite end of cardiac TnI contains a phosphorylation-sensitive ∼30 residue-long N-terminal peptide that is absent in skeletal muscle, and likely modifies these interactions in hearts. Here, PKA-dependent phosphorylation of serine 23 and 24 modulates Ca2+ and possibly switch-peptide binding to TnC, causing faster relaxation during the cardiac-cycle (lusitropy). The cardiac-specific N-terminal TnI domain is not captured in crystal structures of troponin or in cryo-EM reconstructions of thin filaments; thus, its global impact on thin filament structure and function is uncertain. Here, we used protein-protein docking and molecular dynamics simulation-based protocols to build a troponin model that was guided by and hence consistent with the recent seminal Yamada structure of Ca2+-activated thin filaments. We find that when present on thin filaments, phosphorylated Ser23/24 along with adjacent polar TnI residues interact closely with both tropomyosin and the N-lobe of TnC during our simulations. These interactions would likely bias tropomyosin to an off-state positioning on actin. In situ, such enhanced relaxation kinetics would promote cardiac lusitropy.
Collapse
Affiliation(s)
- Elumalai Pavadai
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA, 02118, USA
| | - Michael J Rynkiewicz
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA, 02118, USA
| | - Zeyu Yang
- Department of Chemistry and Institute of Chemical Biology, Imperial College London, Shepard's Bush, London, W12 0BZ, UK
| | - Ian R Gould
- Department of Chemistry and Institute of Chemical Biology, Imperial College London, Shepard's Bush, London, W12 0BZ, UK
| | - Steven B Marston
- National Heart & Lung Institute, Imperial College London, Dovehouse Street, W12 0NN, UK
| | - William Lehman
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA, 02118, USA.
| |
Collapse
|
22
|
Rynkiewicz MJ, Pavadai E, Lehman W. Modeling Human Cardiac Thin Filament Structures. Front Physiol 2022; 13:932333. [PMID: 35812320 PMCID: PMC9257132 DOI: 10.3389/fphys.2022.932333] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022] Open
Abstract
Striated muscle contraction is regulated in a calcium-dependent manner through dynamic motions of the tropomyosin/troponin polymer, a multicomponent complex wrapped around actin-containing thin filaments. Tropomyosin/troponin sterically blocks myosin-binding at low-calcium concentrations but moves to expose myosin-binding sites at high-calcium concentrations leading to force development. Understanding the key intermolecular interactions that define these dynamic motions will promote our understanding of mutation-induced contractile dysfunction that eventually leads to hypertrophic cardiomyopathy, dilated cardiomyopathy, and skeletal myopathies. Advancements in cryoelectron microscopy (cryoEM) have resulted in a partial elucidation of structures of the thin filament, revealing many atomic-level interactions between the component proteins and critical calcium-dependent conformational alterations. However, building models at the resolutions achieved can be challenging since landmarks in the maps are often missing or ambiguous. Therefore, current computational analyses including de novo structure prediction, protein-protein docking, molecular dynamics flexible fitting, and molecular dynamics simulations are needed to ensure good quality models. We review here our efforts to model the troponin T domain spanning the head-to-tail overlap domain of tropomyosin, improving previous models. Next, we refined the published cryoEM modeled structures, which had mistakenly compressed alpha helices, with a model that has expected helical parameters while matching densities in the cryoEM volume. Lastly, we used this model to reinterpret the interactions between tropomyosin and troponin I showing key features that hold the tropomyosin cable in its low-calcium, sterically blocking position. These revised thin filament models show improved intermolecular interactions in the key low- and high-calcium regulatory states, providing novel insights into function.
Collapse
|
23
|
Deranek AE, Baldo AP, Lynn ML, Schwartz SD, Tardiff JC. Structure and Dynamics of the Flexible Cardiac Troponin T Linker Domain in a Fully Reconstituted Thin Filament. Biochemistry 2022; 61:1229-1242. [PMID: 35696530 DOI: 10.1021/acs.biochem.2c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structural analysis of large protein complexes has been greatly enhanced through the application of electron microscopy techniques. One such multiprotein complex, the cardiac thin filament (cTF), has cyclic interactions with thick filament proteins to drive contraction of the heart that has recently been the subject of such studies. As important as these studies are, they provide limited or no information on highly flexible regions that in isolation would be characterized as inherently disordered. One such region is the extended cardiac troponin T (cTnT) linker between the regions of cTnT which have been labeled TNT1 and TNT2. It comprises a hinge region (residues 158-166) and a highly flexible region (residues 167-203). Critically, this region modulates the troponin/tropomyosin complex's position across the actin filament. Thus, the cTnT linker structure and dynamics are central to the regulation of the function of cardiac muscles, but up to now, it was ill-understood. To establish the cTnT linker structure, we coupled an atomistic computational cTF model with time-resolved fluorescence resonance energy transfer measurements in both ±Ca2+ conditions utilizing fully reconstituted cTFs. We mapped the cTnT linker's positioning across the actin filament, and by coupling the experimental results to computation, we found mean structures and ranges of motion of this part of the complex. With this new insight, we can now address cTnT linker structural dynamics in both myofilament activation and disease.
Collapse
Affiliation(s)
- Andrea E Deranek
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Anthony P Baldo
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Melissa L Lynn
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jil C Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
24
|
Mason AB, Tardiff JC, Schwartz SD. Free-Energy Surfaces of Two Cardiac Thin Filament Conformational Changes during Muscle Contraction. J Phys Chem B 2022; 126:3844-3851. [PMID: 35584206 DOI: 10.1021/acs.jpcb.2c01337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The troponin core is an important regulatory complex in cardiac sarcomeres. Contraction is initiated by a calcium ion binding to cardiac troponin C (cTnC), initiating a conformational shift within the protein, altering its interactions with cardiac troponin I (cTnI). The change in cTnC-cTnI interactions prompts the C-terminal domain of cTnI to dissociate from actin, allowing tropomyosin to reveal myosin-binding sites on actin. Each of the concerted movements in the cardiac thin filament (CTF) is crucial for allowing the contraction of cardiomyocytes, yet little is known about the free energy associated with each transition, which is vital for understanding contraction on a molecular level. Using metadynamics, we calculated the free-energy surface of two transitions in the CTF: cTnC opening in the presence and absence of Ca2+ and cTnI dissociating from actin with both open and closed cTnC. These results not only provide the free-energy surface of the transitions but will also be shown to determine if the order of transitions in the contraction cycle is important. From our calculations, we found that the calcium ion helps stabilize the open conformation of cTnC and that the C-terminus of cTnI is stabilized by cTnC in the open conformation when dissociating from the actin surface.
Collapse
Affiliation(s)
- Allison B Mason
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd. Room 221, Tucson, Arizona 85721, United States
| | - Jil C Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd. Room 221, Tucson, Arizona 85721, United States
| |
Collapse
|
25
|
Mason AB, Lynn ML, Baldo AP, Deranek AE, Tardiff JC, Schwartz SD. Computational and biophysical determination of pathogenicity of variants of unknown significance in cardiac thin filament. JCI Insight 2021; 6:154350. [PMID: 34699384 PMCID: PMC8675185 DOI: 10.1172/jci.insight.154350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Point mutations within sarcomeric proteins have been associated with altered function and cardiomyopathy development. Difficulties remain, however, in establishing the pathogenic potential of individual mutations, often limiting the use of genotype in management of affected families. To directly address this challenge, we utilized our all-atom computational model of the human full cardiac thin filament (CTF) to predict how sequence substitutions in CTF proteins might affect structure and dynamics on an atomistic level. Utilizing molecular dynamics calculations, we simulated 21 well-defined genetic pathogenic cardiac troponin T and tropomyosin variants to establish a baseline of pathogenic changes induced in computational observables. Computational results were verified via differential scanning calorimetry on a subset of variants to develop an experimental correlation. Calculations were performed on 9 independent variants of unknown significance (VUS), and results were compared with pathogenic variants to identify high-resolution pathogenic signatures. Results for VUS were compared with the baseline set to determine induced structural and dynamic changes, and potential variant reclassifications were proposed. This unbiased, high-resolution computational methodology can provide unique structural and dynamic information that can be incorporated into existing analyses to facilitate classification both for de novo variants and those where established approaches have provided conflicting information.
Collapse
Affiliation(s)
| | - Melissa L Lynn
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | | | - Andrea E Deranek
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | - Jil C Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | | |
Collapse
|