1
|
Key J, Almaguer-Mederos LE, Kandi AR, Sen NE, Gispert S, Köpf G, Meierhofer D, Auburger G. ATXN2L primarily interacts with NUFIP2, the absence of ATXN2L results in NUFIP2 depletion, and the ATXN2-polyQ expansion triggers NUFIP2 accumulation. Neurobiol Dis 2025; 209:106903. [PMID: 40220918 DOI: 10.1016/j.nbd.2025.106903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
The cytoplasmic Ataxin-2 (ATXN2) protein associates with TDP-43 in stress granules (SG) where RNA quality control occurs. Mutations in this pathway underlie Spinocerebellar Ataxia type 2 (SCA2) and Amyotrophic Lateral Sclerosis. In contrast, Ataxin-2-like (ATXN2L) is predominantly perinuclear, more abundant, and essential for embryonic life. Its sequestration into ATXN2 aggregates may contribute to disease. In this study, we utilized two approaches to clarify the roles of ATXN2L. First, we identified interactors through co-immunoprecipitation in both wild-type and ATXN2L-null murine embryonic fibroblasts. Second, we assessed the proteome profile effects using mass spectrometry in these cells. Additionally, we examined the accumulation of ATXN2L interactors in the SCA2 mouse model, Atxn2-CAG100-KnockIn (KIN). We observed that RNA-binding proteins, including PABPN1, NUFIP2, MCRIP2, RBMS1, LARP1, PTBP1, FMR1, RPS20, FUBP3, MBNL2, ZMAT3, SFPQ, CSDE1, HNRNPK, and HNRNPDL, exhibit a stronger association with ATXN2L compared to established interactors like ATXN2, PABPC1, LSM12, and G3BP2. Additionally, ATXN2L interacted with components of the actin complex, such as SYNE2, LMOD1, ACTA2, FYB, and GOLGA3. We noted that oxidative stress increased HNRNPK but decreased SYNE2 association, which likely reflects the relocalization of SG. Proteome profiling revealed that NUFIP2 and SYNE2 are depleted in ATXN2L-null fibroblasts. Furthermore, NUFIP2 homodimers and SYNE1 accumulate during the ATXN2 aggregation process in KIN 14-month-old spinal cord tissues. The functions of ATXN2L and its interactors are therefore critical in RNA granule trafficking and surveillance, particularly for the maintenance of differentiated neurons.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Luis-Enrique Almaguer-Mederos
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Arvind Reddy Kandi
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Nesli-Ece Sen
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Gabriele Köpf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany; Institute for Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Fachbereich Medizin, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Bonsor M, Ammar O, Schnoegl S, Wanker EE, Silva Ramos E. Polyglutamine disease proteins: Commonalities and differences in interaction profiles and pathological effects. Proteomics 2024; 24:e2300114. [PMID: 38615323 DOI: 10.1002/pmic.202300114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
Currently, nine polyglutamine (polyQ) expansion diseases are known. They include spinocerebellar ataxias (SCA1, 2, 3, 6, 7, 17), spinal and bulbar muscular atrophy (SBMA), dentatorubral-pallidoluysian atrophy (DRPLA), and Huntington's disease (HD). At the root of these neurodegenerative diseases are trinucleotide repeat mutations in coding regions of different genes, which lead to the production of proteins with elongated polyQ tracts. While the causative proteins differ in structure and molecular mass, the expanded polyQ domains drive pathogenesis in all these diseases. PolyQ tracts mediate the association of proteins leading to the formation of protein complexes involved in gene expression regulation, RNA processing, membrane trafficking, and signal transduction. In this review, we discuss commonalities and differences among the nine polyQ proteins focusing on their structure and function as well as the pathological features of the respective diseases. We present insights from AlphaFold-predicted structural models and discuss the biological roles of polyQ-containing proteins. Lastly, we explore reported protein-protein interaction networks to highlight shared protein interactions and their potential relevance in disease development.
Collapse
Affiliation(s)
- Megan Bonsor
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Orchid Ammar
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Sigrid Schnoegl
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Erich E Wanker
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Eduardo Silva Ramos
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
3
|
Johnson SL, Tsou WL, Prifti MV, Harris AL, Todi SV. A survey of protein interactions and posttranslational modifications that influence the polyglutamine diseases. Front Mol Neurosci 2022; 15:974167. [PMID: 36187346 PMCID: PMC9515312 DOI: 10.3389/fnmol.2022.974167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/27/2022] [Indexed: 01/20/2023] Open
Abstract
The presence and aggregation of misfolded proteins has deleterious effects in the nervous system. Among the various diseases caused by misfolded proteins is the family of the polyglutamine (polyQ) disorders. This family comprises nine members, all stemming from the same mutation—the abnormal elongation of a polyQ repeat in nine different proteins—which causes protein misfolding and aggregation, cellular dysfunction and disease. While it is the same type of mutation that causes them, each disease is distinct: it is influenced by regions and domains that surround the polyQ repeat; by proteins with which they interact; and by posttranslational modifications they receive. Here, we overview the role of non-polyQ regions that control the pathogenicity of the expanded polyQ repeat. We begin by introducing each polyQ disease, the genes affected, and the symptoms experienced by patients. Subsequently, we provide a survey of protein-protein interactions and posttranslational modifications that regulate polyQ toxicity. We conclude by discussing shared processes and pathways that bring some of the polyQ diseases together and may serve as common therapeutic entry points for this family of incurable disorders.
Collapse
Affiliation(s)
- Sean L. Johnson
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Wei-Ling Tsou
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Matthew V. Prifti
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Autumn L. Harris
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
- Maximizing Access to Research Careers (MARC) Program, Wayne State University, Detroit, MI, United States
| | - Sokol V. Todi
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
- Maximizing Access to Research Careers (MARC) Program, Wayne State University, Detroit, MI, United States
- Department of Neurology, Wayne State University, Detroit, MI, United States
- *Correspondence: Sokol V. Todi,
| |
Collapse
|