1
|
Yan L, Wang J, Cai X, Liou Y, Shen H, Hao J, Huang C, Luo G, He W. Macrophage plasticity: signaling pathways, tissue repair, and regeneration. MedComm (Beijing) 2024; 5:e658. [PMID: 39092292 PMCID: PMC11292402 DOI: 10.1002/mco2.658] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Macrophages are versatile immune cells with remarkable plasticity, enabling them to adapt to diverse tissue microenvironments and perform various functions. Traditionally categorized into classically activated (M1) and alternatively activated (M2) phenotypes, recent advances have revealed a spectrum of macrophage activation states that extend beyond this dichotomy. The complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications orchestrates macrophage polarization, allowing them to respond to various stimuli dynamically. Here, we provide a comprehensive overview of the signaling cascades governing macrophage plasticity, focusing on the roles of Toll-like receptors, signal transducer and activator of transcription proteins, nuclear receptors, and microRNAs. We also discuss the emerging concepts of macrophage metabolic reprogramming and trained immunity, contributing to their functional adaptability. Macrophage plasticity plays a pivotal role in tissue repair and regeneration, with macrophages coordinating inflammation, angiogenesis, and matrix remodeling to restore tissue homeostasis. By harnessing the potential of macrophage plasticity, novel therapeutic strategies targeting macrophage polarization could be developed for various diseases, including chronic wounds, fibrotic disorders, and inflammatory conditions. Ultimately, a deeper understanding of the molecular mechanisms underpinning macrophage plasticity will pave the way for innovative regenerative medicine and tissue engineering approaches.
Collapse
Affiliation(s)
- Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Jue Wang
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Xin Cai
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Han‐Ming Shen
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospitaland West China School of Basic Medical Sciences and Forensic MedicineSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| |
Collapse
|
2
|
Ramasamy R, Shekhtman A, Schmidt AM. RAGE/DIAPH1 Axis and Cardiometabolic Disease: From Nascent Discoveries to Therapeutic Potential. Arterioscler Thromb Vasc Biol 2024; 44:1497-1501. [PMID: 38924438 PMCID: PMC11210684 DOI: 10.1161/atvbaha.124.320142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Affiliation(s)
- Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, NYU Langone Medical Center (R.R., A.M.S.)
| | | | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, NYU Langone Medical Center (R.R., A.M.S.)
| |
Collapse
|
3
|
Taguchi K, Fukami K. RAGE signaling regulates the progression of diabetic complications. Front Pharmacol 2023; 14:1128872. [PMID: 37007029 PMCID: PMC10060566 DOI: 10.3389/fphar.2023.1128872] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Diabetes, the ninth leading cause of death globally, is expected to affect 642 million people by 2040. With the advancement of an aging society, the number of patients with diabetes having multiple underlying diseases, such as hypertension, obesity, and chronic inflammation, is increasing. Thus, the concept of diabetic kidney disease (DKD) has been accepted worldwide, and comprehensive treatment of patients with diabetes is required. Receptor for advanced glycation endproducts (RAGE), a multiligand receptor, belonging to the immunoglobulin superfamily is extensively expressed throughout the body. Various types of ligands, including advanced glycation endproducts (AGEs), high mobility group box 1, S100/calgranulins, and nucleic acids, bind to RAGE, and then induces signal transduction to amplify the inflammatory response and promote migration, invasion, and proliferation of cells. Furthermore, the expression level of RAGE is upregulated in patients with diabetes, hypertension, obesity, and chronic inflammation, suggesting that activation of RAGE is a common denominator in the context of DKD. Considering that ligand–and RAGE–targeting compounds have been developed, RAGE and its ligands can be potent therapeutic targets for inhibiting the progression of DKD and its complications. Here, we aimed to review recent literature on various signaling pathways mediated by RAGE in the pathogenesis of diabetic complications. Our findings highlight the possibility of using RAGE–or ligand–targeted therapy for treating DKD and its complications.
Collapse
|
4
|
Wang ZQ, Yao HP, Sun Z. N ε-(carboxymethyl)lysine promotes lipid uptake of macrophage via cluster of differentiation 36 and receptor for advanced glycation end products. World J Diabetes 2023; 14:222-233. [PMID: 37035231 PMCID: PMC10075039 DOI: 10.4239/wjd.v14.i3.222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/08/2023] [Accepted: 02/15/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Advanced glycation end products (AGEs) are diabetic metabolic toxic products that cannot be ignored. Nε-(carboxymethyl)lysine (CML), a component of AGEs, could increase macrophage lipid uptake, promote foam cell formation, and thereby accelerate atherosclerosis. The receptor for AGEs (RAGE) and cluster of differentiation 36 (CD36) were the receptors of CML. However, it is still unknown whether RAGE and CD36 play key roles in CML-promoted lipid uptake.
AIM Our study aimed to explore the role of RAGE and CD36 in CML-induced mac-rophage lipid uptake.
METHODS In this study, we examined the effect of CML on lipid uptake by Raw264.7 macrophages. After adding 10 mmol/L CML, the lipid accumulation in macro-phages was confirmed by oil red O staining. Expression changes of CD36 and RAGE were detected with immunoblotting and quantitative real-time polymerase chain reaction. The interaction between CML with CD36 and RAGE was verified by immunoprecipitation. We synthesized a novel N-succinimidyl-4-18F-fluorobenzoate-CML radioactive probe. Radioactive receptor-ligand binding assays were performed to test the binding affinity between CML with CD36 and RAGE. The effects of blocking CD36 or RAGE on CML-promoting lipid uptake were also detected.
RESULTS The study revealed that CML significantly promoted lipid uptake by macro-phages. Immunoprecipitation and radioactive receptor-ligand binding assays indicated that CML could specifically bind to both CD36 and RAGE. CML had a higher affinity for CD36 than RAGE. ARG82, ASN71, and THR70 were the potential interacting amino acids that CD36 binds to CML Anti-CD36 and anti-RAGE could block the uptake of CML by macrophages. The lipid uptake promotion effect of CML was significantly attenuated after blocking CD36 or RAGE.
CONCLUSION Our results suggest that the binding of CML with CD36 and RAGE promotes macrophage lipid uptake.
Collapse
Affiliation(s)
- Zhong-Qun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Hai-Peng Yao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| |
Collapse
|
5
|
Rojas A, Lindner C, Schneider I, Gonzàlez I, Morales MA. Receptor of advanced glycation end-products axis and gallbladder cancer: A forgotten connection that we should reconsider. World J Gastroenterol 2022; 28:5679-5690. [PMID: 36338887 PMCID: PMC9627425 DOI: 10.3748/wjg.v28.i39.5679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/05/2022] [Accepted: 09/09/2022] [Indexed: 02/06/2023] Open
Abstract
Compelling evidence derived from clinical and experimental research has demonstrated the crucial contribution of chronic inflammation in the development of neoplasms, including gallbladder cancer. In this regard, data derived from clinical and experimental studies have demonstrated that the receptor of advanced glycation end-products (RAGE)/AGEs axis plays an important role in the onset of a crucial and long-lasting inflammatory milieu, thus supporting tumor growth and development. AGEs are formed in biological systems or foods, and food-derived AGEs, also known as dietary AGEs are known to contribute to the systemic pool of AGEs. Once they bind to RAGE, the activation of multiple and crucial signaling pathways are triggered, thus favoring the secretion of several proinflammatory cytokines also involved in the promotion of gallbladder cancer invasion and migration. In the present review, we aimed to highlight the relevance of the association between high dietary AGEs intakes and high risk for gallbladder cancer, and emerging data supporting that dietary intervention to reduce gallbladder cancer risk is a very attractive approach that deserves much more research efforts.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Laboratories, Catholic University of Maule, Talca 34600000, Maule, Chile
| | - Cristian Lindner
- Medicine Faculty, Catholic University of Maule, Talca 34600000, Maule, Chile
| | - Iván Schneider
- Medicine Faculty, Catholic University of Maule, Talca 34600000, Maule, Chile
| | - Ileana Gonzàlez
- Biomedical Research Laboratories, Catholic University of Maule, Talca 34600000, Maule, Chile
| | - Miguel Angel Morales
- Department of Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago 8320000, Santiago, Chile
| |
Collapse
|
6
|
Curran CS, Kopp JB. RAGE pathway activation and function in chronic kidney disease and COVID-19. Front Med (Lausanne) 2022; 9:970423. [PMID: 36017003 PMCID: PMC9395689 DOI: 10.3389/fmed.2022.970423] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/21/2022] [Indexed: 12/23/2022] Open
Abstract
The multi-ligand receptor for advanced glycation end-products (RAGE) and its ligands are contributing factors in autoimmunity, cancers, and infectious disease. RAGE activation is increased in chronic kidney disease (CKD) and coronavirus disease 2019 (COVID-19). CKD may increase the risk of COVID-19 severity and may also develop in the form of long COVID. RAGE is expressed in essentially all kidney cell types. Increased production of RAGE isoforms and RAGE ligands during CKD and COVID-19 promotes RAGE activity. The downstream effects include cellular dysfunction, tissue injury, fibrosis, and inflammation, which in turn contribute to a decline in kidney function, hypertension, thrombotic disorders, and cognitive impairment. In this review, we discuss the forms and mechanisms of RAGE and RAGE ligands in the kidney and COVID-19. Because various small molecules antagonize RAGE activity in animal models, targeting RAGE, its co-receptors, or its ligands may offer novel therapeutic approaches to slowing or halting progressive kidney disease, for which current therapies are often inadequate.
Collapse
Affiliation(s)
- Colleen S. Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Jeffrey B. Kopp
- Kidney Disease Section, NIDDK (National Institute of Diabetes and Digestive and Kidney Diseases), National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Arivazhagan L, López-Díez R, Shekhtman A, Ramasamy R, Schmidt AM. Glycation and a Spark of ALEs (Advanced Lipoxidation End Products) - Igniting RAGE/Diaphanous-1 and Cardiometabolic Disease. Front Cardiovasc Med 2022; 9:937071. [PMID: 35811725 PMCID: PMC9263181 DOI: 10.3389/fcvm.2022.937071] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/30/2022] [Indexed: 12/25/2022] Open
Abstract
Obesity and non-alcoholic fatty liver disease (NAFLD) are on the rise world-wide; despite fervent advocacy for healthier diets and enhanced physical activity, these disorders persist unabated and, long-term, are major causes of morbidity and mortality. Numerous fundamental biochemical and molecular pathways participate in these events at incipient, mid- and advanced stages during atherogenesis and impaired regression of established atherosclerosis. It is proposed that upon the consumption of high fat/high sugar diets, the production of receptor for advanced glycation end products (RAGE) ligands, advanced glycation end products (AGEs) and advanced lipoxidation end products (ALEs), contribute to the development of foam cells, endothelial injury, vascular inflammation, and, ultimately, atherosclerosis and its consequences. RAGE/Diaphanous-1 (DIAPH1) increases macrophage foam cell formation; decreases cholesterol efflux and causes foam cells to produce and release damage associated molecular patterns (DAMPs) molecules, which are also ligands of RAGE. DAMPs stimulate upregulation of Interferon Regulatory Factor 7 (IRF7) in macrophages, which exacerbates vascular inflammation and further perturbs cholesterol metabolism. Obesity and NAFLD, characterized by the upregulation of AGEs, ALEs and DAMPs in the target tissues, contribute to insulin resistance, hyperglycemia and type two diabetes. Once in motion, a vicious cycle of RAGE ligand production and exacerbation of RAGE/DIAPH1 signaling ensues, which, if left unchecked, augments cardiometabolic disease and its consequences. This Review focuses on RAGE/DIAPH1 and its role in perturbation of metabolism and processes that converge to augur cardiovascular disease.
Collapse
Affiliation(s)
- Lakshmi Arivazhagan
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Raquel López-Díez
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Alexander Shekhtman
- Department of Chemistry, The State University of New York at Albany, Albany, NY, United States
| | - Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States,*Correspondence: Ann Marie Schmidt
| |
Collapse
|
8
|
Hayashi K, Sato K, Ochi S, Kawano S, Munesue S, Harashima A, Oshima Y, Kimura K, Kyoi T, Yamamoto Y. Inhibitory Effects of Saururus chinensis Extract on Receptor for Advanced Glycation End-Products-Dependent Inflammation and Diabetes-Induced Dysregulation of Vasodilation. Int J Mol Sci 2022; 23:ijms23105757. [PMID: 35628567 PMCID: PMC9147798 DOI: 10.3390/ijms23105757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Advanced glycation end-products (AGEs) and the receptor for AGEs (RAGE) are implicated in inflammatory reactions and vascular complications in diabetes. Signaling pathways downstream of RAGE are involved in NF-κB activation. In this study, we examined whether ethanol extracts of Saururus chinensis (Lour.) Baill. (SE) could affect RAGE signaling and vascular relaxation in streptozotocin (STZ)-induced diabetic rats. Treatment with SE inhibited AGEs-modified bovine serum albumin (AGEs-BSA)-elicited activation of NF-κB and could compete with AGEs-BSA binding to RAGE in a dose-dependent manner. Tumor necrosis factor-α (TNF-α) secretion induced by lipopolysaccharide (LPS)-a RAGE ligand-was also reduced by SE treatment in wild-type Ager+/+ mice as well as in cultured peritoneal macrophages from Ager+/+ mice but not in Ager-/- mice. SE administration significantly ameliorated diabetes-related dysregulation of acetylcholine-mediated vascular relaxation in STZ-induced diabetic rats. These results suggest that SE would inhibit RAGE signaling and would be useful for the improvement of vascular endothelial dysfunction in diabetes.
Collapse
Affiliation(s)
- Kenjiro Hayashi
- Food Development Labs, Functional Food Division, Nippon Shinyaku Co., Ltd., Kyoto 601-8550, Japan; (K.H.); (K.S.); (S.O.); (S.K.); (T.K.)
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan; (S.M.); (A.H.); (Y.O.); (K.K.)
| | - Koichi Sato
- Food Development Labs, Functional Food Division, Nippon Shinyaku Co., Ltd., Kyoto 601-8550, Japan; (K.H.); (K.S.); (S.O.); (S.K.); (T.K.)
| | - Seishi Ochi
- Food Development Labs, Functional Food Division, Nippon Shinyaku Co., Ltd., Kyoto 601-8550, Japan; (K.H.); (K.S.); (S.O.); (S.K.); (T.K.)
| | - Shuhei Kawano
- Food Development Labs, Functional Food Division, Nippon Shinyaku Co., Ltd., Kyoto 601-8550, Japan; (K.H.); (K.S.); (S.O.); (S.K.); (T.K.)
| | - Seiichi Munesue
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan; (S.M.); (A.H.); (Y.O.); (K.K.)
| | - Ai Harashima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan; (S.M.); (A.H.); (Y.O.); (K.K.)
| | - Yu Oshima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan; (S.M.); (A.H.); (Y.O.); (K.K.)
| | - Kumi Kimura
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan; (S.M.); (A.H.); (Y.O.); (K.K.)
| | - Takashi Kyoi
- Food Development Labs, Functional Food Division, Nippon Shinyaku Co., Ltd., Kyoto 601-8550, Japan; (K.H.); (K.S.); (S.O.); (S.K.); (T.K.)
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan; (S.M.); (A.H.); (Y.O.); (K.K.)
- Correspondence:
| |
Collapse
|
9
|
Dual Nature of RAGE in Host Reaction and Nurturing the Mother-Infant Bond. Int J Mol Sci 2022; 23:ijms23042086. [PMID: 35216202 PMCID: PMC8880422 DOI: 10.3390/ijms23042086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
Non-enzymatic glycation is an unavoidable reaction that occurs across biological taxa. The final products of this irreversible reaction are called advanced glycation end-products (AGEs). The endogenously formed AGEs are known to be bioactive and detrimental to human health. Additionally, exogenous food-derived AGEs are debated to contribute to the development of aging and various diseases. Receptor for AGEs (RAGE) is widely known to elicit biological reactions. The binding of RAGE to other ligands (e.g., high mobility group box 1, S100 proteins, lipopolysaccharides, and amyloid-β) can result in pathological processes via the activation of intracellular RAGE signaling pathways, including inflammation, diabetes, aging, cancer growth, and metastasis. RAGE is now recognized as a pattern-recognition receptor. All mammals have RAGE homologs; however, other vertebrates, such as birds, amphibians, fish, and reptiles, do not have RAGE at the genomic level. This evidence from an evolutionary perspective allows us to understand why mammals require RAGE. In this review, we provide an overview of the scientific knowledge about the role of RAGE in physiological and pathological processes. In particular, we focus on (1) RAGE biology, (2) the role of RAGE in physiological and pathophysiological processes, (3) RAGE isoforms, including full-length membrane-bound RAGE (mRAGE), and the soluble forms of RAGE (sRAGE), which comprise endogenous secretory RAGE (esRAGE) and an ectodomain-shed form of RAGE, and (4) oxytocin transporters in the brain and intestine, which are important for maternal bonding and social behaviors.
Collapse
|