1
|
De Marco M, Rai SR, Scietti L, Mattoteia D, Liberi S, Moroni E, Pinnola A, Vetrano A, Iacobucci C, Santambrogio C, Colombo G, Forneris F. Molecular structure and enzymatic mechanism of the human collagen hydroxylysine galactosyltransferase GLT25D1/COLGALT1. Nat Commun 2025; 16:3624. [PMID: 40240392 PMCID: PMC12003778 DOI: 10.1038/s41467-025-59017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 04/08/2025] [Indexed: 04/18/2025] Open
Abstract
During collagen biosynthesis, lysine residues undergo extensive post-translational modifications through the alternate action of two distinct metal ion-dependent enzyme families (i.e., LH/PLODs and GLT25D/COLGALT), ultimately producing the highly conserved α-(1,2)-glucosyl-β-(1,O)-galactosyl-5-hydroxylysine pattern. Malfunctions in these enzymes are linked to developmental pathologies and extracellular matrix alterations associated to enhanced aggressiveness of solid tumors. Here, we characterized human GLT25D1/COLGALT1, revealing an elongated head-to-head homodimeric assembly. Each monomer encompasses two domains (named GT1 and GT2), both unexpectedly capable of binding metal ion cofactors and UDP-α-galactose donor substrates, resulting in four candidate catalytic sites per dimer. We identify the catalytic site in GT2, featuring an unusual Glu-Asp-Asp motif critical for Mn2+ binding, ruling out direct catalytic roles for the GT1 domain, but showing that in this domain the unexpectedly bound Ca2+ and UDP-α-galactose cofactors are critical for folding stability. Dimerization, albeit not essential for GLT25D1/COLGALT1 activity, provides a critical molecular contact site for multi-enzyme assembly interactions with partner multifunctional LH/PLOD lysyl hydroxylase-glycosyltransferase enzymes.
Collapse
Grants
- MFAG 20075, BRIDGE 27004 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- Rarer Types EDS Grant 2022 Ehlers-Danlos Society (EDS)
- CDA 2013 Giovanni Armenise-Harvard Foundation
- NextGeneration-EU PNRR MUR M4C2 PE00000007 INF-ACT Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN PNRR 2022 P20224WAME Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN PNRR 2022 P20224WAME Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- Piano Operativo Salute, IMMUNO-HUB Ministero della Salute (Ministry of Health, Italy)
- regional law n° 9/2020, resolution n° 3776/2020 Regione Lombardia (Region of Lombardy)
- Please update "Ministero dell'Istruzione, dell'Università e della Ricerca" with "Ministero dell'Università e della Ricerca (MUR)"
Collapse
Affiliation(s)
- Matteo De Marco
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100, Pavia, Italy
| | - Sristi Raj Rai
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100, Pavia, Italy
| | - Luigi Scietti
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100, Pavia, Italy
- Biochemistry and Structural Biology Unit, Department of Experimental Oncology, IRCCS European Institute of Oncology (IEO), Via Adamello 16, 20139, Milan, Italy
| | - Daiana Mattoteia
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100, Pavia, Italy
| | - Stefano Liberi
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100, Pavia, Italy
| | | | - Alberta Pinnola
- BioPhotoLab, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100, Pavia, Italy
| | - Alice Vetrano
- Department of Physical and Chemical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Claudio Iacobucci
- Department of Physical and Chemical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, Via Taramelli 12, Pavia, Italy
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100, Pavia, Italy.
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
2
|
Peng J, Li W, Yao D, Xia Y, Wang Q, Cai Y, Li S, Cao M, Shen Y, Ma P, Liao R, Zhao J, Qin A, Cao Y. The structural basis for the human procollagen lysine hydroxylation and dual-glycosylation. Nat Commun 2025; 16:2436. [PMID: 40069201 PMCID: PMC11897130 DOI: 10.1038/s41467-025-57768-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
The proper assembly and maturation of collagens necessitate the orchestrated hydroxylation and glycosylation of multiple lysyl residues in procollagen chains. Dysfunctions in this multistep modification process can lead to severe collagen-associated diseases. To elucidate the coordination of lysyl processing activities, we determine the cryo-EM structures of the enzyme complex formed by LH3/PLOD3 and GLT25D1/ColGalT1, designated as the KOGG complex. Our structural analysis reveals a tetrameric complex comprising dimeric LH3/PLOD3s and GLT25D1/ColGalT1s, assembled with interactions involving the N-terminal loop of GLT25D1/ColGalT1 bridging another GLT25D1/ColGalT1 and LH3/PLOD3. We further elucidate the spatial configuration of the hydroxylase, galactosyltransferase, and glucosyltransferase sites within the KOGG complex, along with the key residues involved in substrate binding at these enzymatic sites. Intriguingly, we identify a high-order oligomeric pattern characterized by the formation of a fiber-like KOGG polymer assembled through the repetitive incorporation of KOGG tetramers as the biological unit.
Collapse
Affiliation(s)
- Junjiang Peng
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Wenguo Li
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Deqiang Yao
- Institute of Aging & Tissue Regeneration, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ying Xia
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Qian Wang
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Yan Cai
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Shaobai Li
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Mi Cao
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Yafeng Shen
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Peixiang Ma
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Rijing Liao
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Jie Zhao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yu Cao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China.
| |
Collapse
|
3
|
Personnaz J, Guillou H, Kautz L. Fibrinogen-like 1: A hepatokine linking liver physiology to hematology. Hemasphere 2024; 8:e115. [PMID: 38966209 PMCID: PMC11223652 DOI: 10.1002/hem3.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024] Open
Abstract
A recent study identified the critical contribution of the hepatokine FGL1 to the regulation of iron metabolism during the recovery from anemia. FGL1 is secreted by hepatocytes in response to hypoxia to sequester BMP ligands and repress the transcription of the iron-regulatory hormone hepcidin. This process ensures the proper supply of iron to the bone marrow for new red blood cell synthesis and the restoration of physiological oxygen levels. FGL1 may therefore contribute to the recovery from common anemias and cause iron overload in chronic anemias with ineffective erythropoiesis, such as ß-thalassemia, dyserythropoietic anemia, and myelodysplastic syndromes. However, FGL1 has also been described as a regulator of hepatocyte proliferation, glucose homeostasis, and insulin signaling, as well as a mediator of liver steatosis and immune evasion. Chronic exposure to elevated levels of FGL1 during anemia may therefore have systemic metabolic effects besides iron regulation and erythropoiesis. Here, we are providing an overview of the proposed functions of FGL1 in physiology and pathophysiology.
Collapse
Affiliation(s)
- Jean Personnaz
- IRSD, Université de ToulouseINSERM, INRAE, ENVT, Univ Toulouse III‐Paul Sabatier (UPS)ToulouseFrance
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology)INRAE, ENVT, INP‐PURPAN, UMR 1331, UPS, Université de ToulouseToulouseFrance
| | - Léon Kautz
- IRSD, Université de ToulouseINSERM, INRAE, ENVT, Univ Toulouse III‐Paul Sabatier (UPS)ToulouseFrance
| |
Collapse
|
4
|
Shafieizadeh Z, Shafieizadeh Z, Davoudi M, Afrisham R, Miao X. Role of Fibrinogen-like Protein 1 in Tumor Recurrence Following Hepatectomy. J Clin Transl Hepatol 2024; 12:406-415. [PMID: 38638375 PMCID: PMC11022061 DOI: 10.14218/jcth.2023.00397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 01/25/2024] [Indexed: 04/20/2024] Open
Abstract
Partial hepatectomy is a first-line treatment for hepatocellular carcinoma. Within 2 weeks following partial hepatectomy, specific molecular pathways are activated to promote liver regeneration. Nevertheless, residual microtumors may also exploit these pathways to reappear and metastasize. Therapeutically targeting molecules that are differentially regulated between normal cells and malignancies, such as fibrinogen-like protein 1 (FGL1), appears to be an effective approach. The potential functions of FGL1 in both regenerative and malignant cells are discussed within the ambit of this review. While FGL1 is normally elevated in regenerative hepatocytes, it is normally downregulated in malignant cells. Hepatectomy does indeed upregulate FGL1 by increasing the release of transcription factors that promote FGL1, including HNF-1α and STAT3, and inflammatory effectors, such as TGF-β and IL6. This, in turn, stimulates certain proliferative pathways, including EGFR/Src/ERK. Hepatectomy alters the phase transition of highly differentiated hepatocytes from G0 to G1, thereby transforming susceptible cells into cancerous ones. Activation of the PI3K/Akt/mTOR pathway by FGL1 allele loss on chromosome 8, a tumor suppressor area, may also cause hepatocellular carcinoma. Interestingly, FGL1 is specifically expressed in the liver via HNF-1α histone acetylase activity, which triggers lipid metabolic reprogramming in malignancies. FGL1 might also be involved in other carcinogenesis processes such as hypoxia, epithelial-mesenchymal transition, immunosuppression, and sorafenib-mediated drug resistance. This study highlights a research gap in these disciplines and the necessity for additional research on FGL1 function in the described processes.
Collapse
Affiliation(s)
- Zahra Shafieizadeh
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Shafieizadeh
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Davoudi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Afrisham
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Xiaolei Miao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| |
Collapse
|
5
|
The Effect of the NFκB-USP9X-Cx43 Axis on the Dynamic Balance of Bone Formation/Degradation during Ossification of the Posterior Longitudinal Ligament of the Cervical Spine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1604932. [PMID: 35391932 PMCID: PMC8983240 DOI: 10.1155/2022/1604932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 12/17/2022]
Abstract
Connexin 43- (Cx43-) mediated nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) signaling has been found involved in the ossification of the posterior longitudinal ligament (OPLL). However, the underlying mechanism how OPLL is regulated has not been elucidated. In the present study, primary ligament fibroblast were isolated; immunoprecipitation (IP) and liquid chromatography-mass spectrometry (LC-MS) assays were applied to identify potential binding proteins of Cx43. Protein interaction was then confirmed by co-IP assay. Alkaline phosphatase (ALP) activity and alizarin red staining were used to evaluate ossification. Luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were employed to assess the binding between NF-κB p65 and target gene. Lipoxygenase inhibitor (5,8,11-eicosatriynoic acid, EPA) was applied to induce endoplasmic reticulum (ER) stress, and 4-phenylbutyrate (4-PBA) was used as an ER-stress inhibitor. Expression of USP9X, Cx43, and nuclei p65 in ligaments from patients and controls was detected by Western blotting. The results showed that ubiquitin-specific protease 9 X-chromosome (USP9X), a deubiquitylating enzyme, was a candidate of Cx43 binding proteins, and USP9X inhibited Cx43 ubiquitination. In vitro experiments showed that USP9X promoted ossification of primary ligament fibroblasts and nuclear translocation of NF-κB p65 by regulating Cx43 expression. Moreover, NF-κB can bind to the USP9X promoter to promote its transcription. When ER stress was inhibited by 4-PBA, USP9X levels, NF-κB nuclei translocation, and ALP activity were decreased. Reverse results were obtained when ER stress was induced by EPA. PDTC, an NF-κB inhibitor, could abolish the effects of EPA. Furthermore, USP9X, Cx43, and nuclei p65 were significantly upregulated in ligaments from OPLL patients than non-OPLL controls. USP9X was positively correlated with CX43 and nuclei p65 in OPLL samples. Overall, the findings suggest that the ER stress–NFκB-USP9X-Cx43 signaling pathway plays an important role in OPLL progression.
Collapse
|