1
|
Esmaeili A, Yazdanpanah N, Rezaei N. LncRNAs Orchestrating Neuroinflammation: A Comprehensive Review. Cell Mol Neurobiol 2025; 45:21. [PMID: 40056236 PMCID: PMC11890384 DOI: 10.1007/s10571-025-01538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/17/2025] [Indexed: 03/10/2025]
Abstract
CNS diseases account for a major part of the comorbidity and mortality of the human population; moreover, neuroinflammation has become an indication for different CNS diseases, for instance, Parkinson's and Alzheimer's disease. Microglia and astrocytes are the two main glial cells that can be found in the CNS. Each of these plays an important role in mediating immune responses like inflammation. There are many studies suggesting the role of LncRNAs in mediating neuroinflammation. Indeed, LncRNAs orchestrate neuroinflammation through various mechanisms, namely miRNA sponge, and transcriptional activation/inhibition. In addition, LncRNAs regulate different downstream pathways like NF-κB, and PI3K/AKT. In this study, we gathered the existing studies regarding the mechanisms of action of LncRNAs in the pathogenesis of different CNS diseases like neurodegenerative diseases and traumatic injuries through regulating neuroinflammation. We aim to elaborate on the regulatory roles of LncRNAs in neuroinflammation and bring a more profound understanding of the etiology of CNS diseases in terms of neuroinflammation.
Collapse
Affiliation(s)
- Arash Esmaeili
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Yazdanpanah
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Ding JM, Zhong HM, Huang K, Zeng W, Chen L. Apoptosis and long non-coding RNAs: Focus on their roles in ischemic stroke. Brain Res 2025; 1849:149346. [PMID: 39581527 DOI: 10.1016/j.brainres.2024.149346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Ischemic stroke (IS) is a severe and sudden cerebrovascular event, associated with notably high rates of mortality and morbidity. The process of apoptosis, a genetically orchestrated form of programmed cell death, is divided into two pathways: intrinsic and extrinsic. The intricate involvement of long non-coding RNA (lncRNA) in the pathobiology of IS, particularly in modulating neuronal apoptosis, is a burgeoning area of research. This review synthesizes the current understanding of the regulatory mechanisms of lncRNA on neuronal apoptosis in the context of ischemic stroke. Specifically, we highlight the roles of lncRNA such as ANRIL, C2dat1/2, H19, TUG1, MEG3, SNHG, and GAS5, which have been implicated in the facilitation of neuronal apoptosis. Conversely, the lncRNA N1LR has been shown to exert an inhibitory effect on this process. The role of MALAT1 in neuronal apoptosis remains a subject of ongoing debate, as its function oscillates between pro-apoptotic and anti-apoptotic roles, thus highlighting the need for further elucidation.
Collapse
Affiliation(s)
- Jia Min Ding
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Hui Min Zhong
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Kuan Huang
- Anesthesia Surgical Center The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Wen Zeng
- Department of Anesthesiology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Li Chen
- Anesthesia Surgical Center The First Affiliated Hospital of Gannan Medical University, Ganzhou, China; Anesthesia Key Laboratory of Gannan Medical University, Ganzhou, China; Prevention and Treatment of Cardiovascular and Cerebrovascular Disease, Ministry of Education, Gannan Medical University, Ganzhou 34100, China.
| |
Collapse
|
3
|
He W, Cheng Y, Lai Y. CircRNA_102046 Affects the Occurrence and Development of Ischemic Stroke by Regulating the miR-493-5p/ROCK1 Signaling. Cardiovasc Toxicol 2024; 24:280-290. [PMID: 38376771 DOI: 10.1007/s12012-024-09831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
In our previous studies, the results have revealed that circRNA_102046 is significantly upregulated in plasma of patients with ischemic stroke, which closely related to NIHSS score. Human neural stem cells (hNSCs) were used for characterization and subcellular localization of circRNA_102046, and hNSCs OGD/R model was generated. The proliferation of cells was examined by CCK-8 assay. The expression levels of associated molecules were evaluated using RT-qPCR, immunofluorescence staining or western blotting. The binding and co-localization of associated molecules were also evaluated by RIP and FISH assay. Furthermore, MCAO mouse model was established to examine the effects of circRNA_102046 on the progression of ischemic stroke. Expression of circRNA_102046 was detected in the cytoplasma of hNSCs. Then OGD/R cell model was established, where the levels of circRNA_102046 was significantly up-regulated. Furthermore, knockdown of circRNA_102046 was able to enhance the proliferation and differentiation of OGD/R hNSCs. In further downstream molecular studies, the results indicated that circRNA_102046 could participate in the occurrence and development of ischemic stroke through targeting miR-493-5p. In addition, ROCK1 was identified as the putative target of miR-493-5p, and circRNA_102046 regulates the proliferation and differentiation of hNSCs via the miR-493-5p/ROCK1 signaling. More importantly, the infarct volumes of MCAO mice were remarkably reduced after the treatment with sh-circRNA_102046, which also up- and down-regulate the expression of miR-493-5p and ROCK1, respectively. Elucidating this novel pathway provides a theoretical basis for the development of new diagnostic approach and targeted treatment for ischemic stroke.
Collapse
Affiliation(s)
- Wentao He
- Department of General Medicine, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yuanyuan Cheng
- Department of General Medicine, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| | - Yujie Lai
- Department of Neurology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| |
Collapse
|
4
|
Ouyang L, Xia W, Al-Alwany AA, Gupta R, Sapaev I, Almalki SG, Almawash S, Ziyad RA, Alawadi AH, Alsalamy A. Ischemic Stroke and Autophagy: The Roles of Long Non-Coding RNAs. Curr Neuropharmacol 2024; 23:85-97. [PMID: 39021183 PMCID: PMC11519825 DOI: 10.2174/1570159x22666240704123701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/19/2023] [Accepted: 01/16/2024] [Indexed: 07/20/2024] Open
Abstract
Ischemic stroke is a significant cause of morbidity and mortality worldwide. Autophagy, a process of intracellular degradation, has been shown to play a crucial role in the pathogenesis of ischemic stroke. Long non-coding RNAs (lncRNAs) have emerged as essential regulators of autophagy in various diseases, including ischemic stroke. Recent studies have identified several lncRNAs that modulate autophagy in ischemic stroke, including MALAT1, MIAT, SNHG12, H19, AC136007. 2, C2dat2, MEG3, KCNQ1OT1, SNHG3, and RMRP. These lncRNAs regulate autophagy by interacting with key proteins involved in the autophagic process, such as Beclin-1, ATG7, and LC3. Understanding the role of lncRNAs in regulating autophagy in ischemic stroke may provide new insights into the pathogenesis of this disease and identify potential therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Longqiang Ouyang
- Department of Neurosurgery, The First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Wenyan Xia
- Department of Endocrinology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | | | - Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Ibrokhim Sapaev
- New Uzbekistan University, Tashkent, Uzbekistan
- School of Engineering, Central Asian University, Tashkent 111221, Uzbekistan
- Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, 39, Kari Niyaziy Str., 100000, Uzbekistan
| | - Sami G. Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Saud Almawash
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| | - Rand Ali Ziyad
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja’afar Al‐Sadiq University, Al‐Muthanna 66002, Iraq
| |
Collapse
|
5
|
Li S, Qu X, Qin Z, Gao J, Li J, Liu J. lncfos/miR-212-5p/CASP7 Axis-Regulated miR-212-5p Protects the Brain Against Ischemic Damage. Mol Neurobiol 2023; 60:2767-2785. [PMID: 36715920 DOI: 10.1007/s12035-023-03216-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023]
Abstract
miR-212-5p has been reported to be involved in many biological processes. However, the role of miR-212-5p in ischemic stroke remains unclear. This study explored the biological role and potential mechanism of miR-212-5p in ischemic stroke by investigating the lncfos/miR-212-5p/CASP7 axis. A total of 32 patients with ischemic stroke and 32 age- and sex-matched healthy controls (HCs) were enrolled in this study. In addition, 336 rats were used in this study. The rats were subjected to middle cerebral artery occlusion (MCAO) and intracerebroventricular injection of a microRNA (miRNA) agomir, a miRNA antagomir, a short hairpin RNA (shRNA) lentiviral vector, or a negative control. The neurological deficit score was calculated; the infarct volume was measured; histopathological assays were performed; the neuronal apoptosis rate was determined; and the lncfos, miR-212-5p, and CASP7 expression levels in the peri-infarct area were assessed. In this study, we found that the expression level of miR-212-5p was significantly downregulated in the peri-infarct area and blood of the MCAO model rats and the blood of patients with ischemic stroke. A double-luciferase experiment showed that CASP7 was a direct target gene of miR-212-5p and that miR-212-5p was a target miRNA of lncfos. Lateral ventricular injection of the miR-212-5p agomir effectively inhibited the apoptosis induced by ischemic brain damage, reduced the infarct volume, attenuated the neurological deficit symptoms, and downregulated the expression of CASP7 in the peri-infarct area of the MCAO model rats. Suppressing lncfos with sh-fos led to the upregulated expression of miR-212-5p and played a neuroprotective role in the rat MCAO models. We concluded that miR-212-5p plays a neuroprotective role in ischemic stroke and that its function is regulated by the lncfos/miR-212-5p/CASP7 axis. Moreover, miR-212-5p may be a potential biomarker and therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Shenghua Li
- Department of Neurology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Xiang Qu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhenxiu Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinggui Gao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinpin Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingli Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
6
|
Li J, Liu W, Peng F, Cao X, Xie X, Peng C. The multifaceted biology of lncR-Meg3 in cardio-cerebrovascular diseases. Front Genet 2023; 14:1132884. [PMID: 36968595 PMCID: PMC10036404 DOI: 10.3389/fgene.2023.1132884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Cardio-cerebrovascular disease, related to high mortality and morbidity worldwide, is a type of cardiovascular or cerebrovascular dysfunction involved in various processes. Therefore, it is imperative to conduct additional research into the pathogenesis and new therapeutic targets of cardiovascular and cerebrovascular disorders. Long non-coding RNAs (lncRNAs) have multiple functions and are involved in nearly all cellular biological processes, including translation, transcription, signal transduction, and cell cycle control. LncR-Meg3 is one of them and is becoming increasingly popular. By binding proteins or directly or competitively binding miRNAs, LncR-Meg3 is involved in apoptosis, inflammation, oxidative stress, endoplasmic reticulum stress, epithelial-mesenchymal transition, and other processes. Recent research has shown that LncR-Meg3 is associated with acute myocardial infarction and can be used to diagnose this condition. This article examines the current state of knowledge regarding the expression and regulatory function of LncR-Meg3 in relation to cardiovascular and cerebrovascular diseases. The abnormal expression of LncR-Meg3 can influence neuronal cell death, inflammation, apoptosis, smooth muscle cell proliferation, etc., thereby aggravating or promoting the disease. In addition, we review the bioactive components that target lncR-Meg3 and propose some potential delivery vectors. A comprehensive and in-depth analysis of LncR-Meg3’s role in cardiovascular disease suggests that targeting LncR-Meg3 may be an alternative therapy in the near future, providing new options for slowing the progression of cardiovascular disease.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenxiu Liu
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Fu Peng, ; Xiaofang Xie, ; Cheng Peng,
| | - Xiaoyu Cao
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Xie
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fu Peng, ; Xiaofang Xie, ; Cheng Peng,
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fu Peng, ; Xiaofang Xie, ; Cheng Peng,
| |
Collapse
|
7
|
Srivastava S, Garg I, Singh Y, Meena R, Ghosh N, Kumari B, Kumar V, Eslavath MR, Singh S, Dogra V, Bargotya M, Bhattar S, Gupta U, Jain S, Hussain J, Varshney R, Ganju L. Evaluation of altered miRNA expression pattern to predict COVID-19 severity. Heliyon 2023; 9:e13388. [PMID: 36743852 PMCID: PMC9889280 DOI: 10.1016/j.heliyon.2023.e13388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Outbreak of COVID-19 pandemic in December 2019 affected millions of people globally. After substantial research, several biomarkers for COVID-19 have been validated however no specific and reliable biomarker for the prognosis of patients with COVID-19 infection exists. Present study was designed to identify specific biomarkers to predict COVID-19 severity and tool for formulating treatment. A small cohort of subjects (n = 43) were enrolled and categorized in four study groups; Dead (n = 16), Severe (n = 10) and Moderate (n = 7) patients and healthy controls (n = 10). Small RNA sequencing was done on Illumina platform after isolation of microRNA from peripheral blood. Differential expression (DE) of miRNA (patients groups compared to control) revealed 118 down-regulated and 103 up-regulated known miRNAs with fold change (FC) expression ≥2 folds and p ≤ 0.05. DE miRNAs were then subjected to functional enrichment and network analysis. Bioinformatic analysis resulted in 31 miRNAs (24 Down-regulated; 7 up-regulated) significantly associated with COVID-19 having AUC>0.8 obtained from ROC curve. Seventeen out of 31 DE miRNAs have been linked to COVID-19 in previous studies. Three miRNAs, hsa-miR-147b-5p and hsa-miR-107 (down-regulated) and hsa-miR-1299 (up-regulated) showed significant unique DE in Dead patients. Another set of 4 miRNAs, hsa-miR-224-5p (down-regulated) and hsa-miR-4659b-3p, hsa-miR-495-3p and hsa-miR-335-3p were differentially up-regulated uniquely in Severe patients. Members of three miRNA families, hsa-miR-20, hsa-miR-32 and hsa-miR-548 were significantly down-regulated in all patients group in comparison to healthy controls. Thus a distinct miRNA expression profile was observed in Dead, Severe and Moderate COVID-19 patients. Present study suggests a panel of miRNAs which identified in COVID-19 patients and could be utilized as potential diagnostic biomarkers for predicting COVID-19 severity.
Collapse
Affiliation(s)
- Swati Srivastava
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India,Corresponding author
| | - Iti Garg
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India,Corresponding author
| | - Yamini Singh
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Ramesh Meena
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Nilanjana Ghosh
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Babita Kumari
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Vinay Kumar
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Malleswara Rao Eslavath
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Sayar Singh
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Vikas Dogra
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Mona Bargotya
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Sonali Bhattar
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Utkarsh Gupta
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Shruti Jain
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Javid Hussain
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Rajeev Varshney
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Lilly Ganju
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| |
Collapse
|
8
|
Predicting Microenvironment in CXCR4- and FAP-Positive Solid Tumors-A Pan-Cancer Machine Learning Workflow for Theranostic Target Structures. Cancers (Basel) 2023; 15:cancers15020392. [PMID: 36672341 PMCID: PMC9856808 DOI: 10.3390/cancers15020392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
(1) Background: C-X-C Motif Chemokine Receptor 4 (CXCR4) and Fibroblast Activation Protein Alpha (FAP) are promising theranostic targets. However, it is unclear whether CXCR4 and FAP positivity mark distinct microenvironments, especially in solid tumors. (2) Methods: Using Random Forest (RF) analysis, we searched for entity-independent mRNA and microRNA signatures related to CXCR4 and FAP overexpression in our pan-cancer cohort from The Cancer Genome Atlas (TCGA) database-representing n = 9242 specimens from 29 tumor entities. CXCR4- and FAP-positive samples were assessed via StringDB cluster analysis, EnrichR, Metascape, and Gene Set Enrichment Analysis (GSEA). Findings were validated via correlation analyses in n = 1541 tumor samples. TIMER2.0 analyzed the association of CXCR4 / FAP expression and infiltration levels of immune-related cells. (3) Results: We identified entity-independent CXCR4 and FAP gene signatures representative for the majority of solid cancers. While CXCR4 positivity marked an immune-related microenvironment, FAP overexpression highlighted an angiogenesis-associated niche. TIMER2.0 analysis confirmed characteristic infiltration levels of CD8+ cells for CXCR4-positive tumors and endothelial cells for FAP-positive tumors. (4) Conclusions: CXCR4- and FAP-directed PET imaging could provide a non-invasive decision aid for entity-agnostic treatment of microenvironment in solid malignancies. Moreover, this machine learning workflow can easily be transferred towards other theranostic targets.
Collapse
|
9
|
Zhao Y, Liu Y, Zhang Q, Liu H, Xu J. The Mechanism Underlying the Regulation of Long Non-coding RNA MEG3 in Cerebral Ischemic Stroke. Cell Mol Neurobiol 2023; 43:69-78. [PMID: 34988760 PMCID: PMC11415200 DOI: 10.1007/s10571-021-01176-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/27/2021] [Indexed: 01/07/2023]
Abstract
Cerebral ischemic stroke is one of the leading causes of morbidity and mortality worldwide, and rapidly increasing annually with no more effective therapeutic measures. Thus, the novel diagnostic and prognostic biomarkers are urgent to be identified for prevention and therapy of ischemic stroke. Recently, long noncoding RNAs (lncRNAs), a major family of noncoding RNAs with more than 200 nucleotides, have been considered as new targets for modulating pathological process of ischemic stroke. In this review, we summarized that the lncRNA-maternally expressed gene 3 (MEG3) played a critical role in promotion of neuronal cell death and inhibition of angiogenesis in response to hypoxia or ischemia condition, and further described the challenge of overcrossing blood-brain barrier (BBB) and determination of optimal carrier for delivering lncRNA' drugs into the specific brain regions. In brief, MEG3 will be a potential diagnostic biomarker and drug target in treatment and therapy of ischemic stroke in the future.
Collapse
Affiliation(s)
- Yanfang Zhao
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China.
| | - Yingying Liu
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qili Zhang
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Hongliang Liu
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Jianing Xu
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
10
|
Estrada-Meza C, Torres-Copado A, Loreti González-Melgoza L, Ruiz-Manriquez LM, De Donato M, Sharma A, Pathak S, Banerjee A, Paul S. Recent insights into the microRNA and long non-coding RNA-mediated regulation of stem cell populations. 3 Biotech 2022; 12:270. [PMID: 36101546 PMCID: PMC9464284 DOI: 10.1007/s13205-022-03343-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/29/2022] [Indexed: 12/19/2022] Open
Abstract
Stem cells are undifferentiated cells that have multi-lineage differentiation. The transition from self-renewal to differentiation requires rapid and extensive gene expression alterations. Since different stem cells exhibit diverse non-coding RNAs (ncRNAs) expression profiles, the critical roles of ncRNAs in stem cell reprogramming, pluripotency maintenance, and differentiation have been widely investigated over the past few years. Hence, in this current review, the two main categories of ncRNAs, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are discussed. While the primary way by which miRNAs restrict mRNA transcription is through miRNA-mRNA interaction, lncRNAs have a wide range of effects on mRNA functioning, including interactions with miRNAs. Both of these ncRNAs participate in the post-transcriptional regulation of crucial biological mechanisms, such as cell cycle regulation, apoptosis, aging, and cell fate decisions. These findings shed light on a previously unknown aspect of gene regulation in stem cell fate determination and behavior. Overall, we summarized the key roles of miRNAs (including exosomal miRNAs) and lncRNAs in the regulation of stem cell populations, such as cardiac, hematopoietic, mesenchymal, neural, and spermatogonial, as well ncRNAs' influence on malignancy through modulating cancer stem cells, which might significantly contribute to clinical stem cell therapy and in regenerative medicine.
Collapse
Affiliation(s)
- Carolina Estrada-Meza
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Andrea Torres-Copado
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Luisa Loreti González-Melgoza
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Luis M. Ruiz-Manriquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Marcos De Donato
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| |
Collapse
|
11
|
Wang A, Chen Y, Shi L, Li M, Li L, Wang S, Wang C. Tumor-suppressive MEG3 induces microRNA-493-5p expression to reduce arabinocytosine chemoresistance of acute myeloid leukemia cells by downregulating the METTL3/MYC axis. J Transl Med 2022; 20:288. [PMID: 35761379 PMCID: PMC9235226 DOI: 10.1186/s12967-022-03456-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Background Chemoresistance serves as a huge obstacle for acute myeloid leukemia (AML) patients. To counteract the chemoresistance in AML cells, we discussed the role of maternally expressed gene 3 (MEG3) in arabinocytosine (AraC) chemoresistance in AML cells. Methods MEG3, microRNA (miR)-493-5p, methyltransferase-like 3 (METTL3) and MYC expression in AML cells was determined and then their interactions were also analyzed. Then, the viability and apoptosis of AML cells were determined through loss- and gain- function assay. The level of m6A modification in AML cells was examined. AML mouse models were also established to validate the potential roles of MEG3. Results MEG3 and miR-493-5p were downregulated in AML cells, and they were lower in resistant cells than in parental cells. MEG3 led to elevated expression of miR-493-5p which targeted METTL3. METTL3 increased expression of MYC by promoting its m6A levels. Overexpression of MEG3 and miR-493-5p or knockdown of METTL3 inhibited HL-60 and Molm13 cell proliferation and promoted their apoptosis. Overexpressed MEG3 induced heightened sensitivity of AML cells to AraC. However, the suppression of miR-493-5p reversed the effects of overexpressed MEG3 on AML cells. Conclusions Collectively, MEG3 could upregulate miR-493-5p expression and suppress the METTL3/MYC axis through MYC m6A methylation, by which MEG3 promoted the chemosensitivity of AML cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03456-x.
Collapse
Affiliation(s)
- Airong Wang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Erqi District, No. 1, Eastern Jianshe Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Yufei Chen
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Erqi District, No. 1, Eastern Jianshe Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Luyao Shi
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Erqi District, No. 1, Eastern Jianshe Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Mengya Li
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Erqi District, No. 1, Eastern Jianshe Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Lingling Li
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Erqi District, No. 1, Eastern Jianshe Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Shujuan Wang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Erqi District, No. 1, Eastern Jianshe Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Chong Wang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Erqi District, No. 1, Eastern Jianshe Road, Zhengzhou, 450052, Henan, People's Republic of China.
| |
Collapse
|
12
|
Chen H, Fu Y, Guo Z, Zhou X. MicroRNA-29c-3p participates in insulin function to modulate polycystic ovary syndrome via targeting Forkhead box O 3. Bioengineered 2022; 13:4361-4371. [PMID: 35142592 PMCID: PMC8973910 DOI: 10.1080/21655979.2022.2033014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
MicroRNAs (miRNAs) are gene expression regulators and changes in miRNA levels are associated with diabetes, insulin resistance, and inflammation, the latter two of which are characteristic of polycystic ovary syndrome (PCOS). The purpose of this study was to explore the specific mechanism in which miR-29 c-3p participated in insulin function to regulate PCOS by targeting Forkhead box O 3 (Foxo3). Peripheral blood from PCOS patients and healthy volunteers were first collected, and the expression levels of miR-29 c-3p and Foxo3 were detected by reverse transcription quantitative polymerase chain reaction or Western blot. Then human granular tumor cell line (KGN) was treated with insulin, and transfected with plasmid vectors interfering with miR-29 c-3p or Foxo3 expression. Cell proliferation was detected by Cell counting kit-8 and plate cloning, and cell apoptosis was tested by flow cytometry. In addition, PCOS rat model was established. PCOS rats were injected with plasmids vectors interfering with miR-29 c-3p or Foxo3 expression, respectively. Pathological changes in ovarian tissues of rats in each group were observed by hematoxylin-eosin staining, and serum sex hormones and glucose metabolism-related indicators were detected. Finally, via bioinformatics website, luciferase digestion report assay was detected the targeting relationship between miR-29 c-3p and Foxo3. The experimental results showed that miR-29 c-3p was down-regulated in PCOS, but Foxo3 was up-regulated. Up-regulated miR-29 c-3p or down-regulated Foxo3 promoted KGN cell proliferation, inhibited apoptosis in vitro, restored PCOS rat sex hormone levels and improved glucose metabolism in vivo. These results suggest that miR-29 c-3p is involved in insulin function to improve PCOS by targeting Foxo3.
Collapse
Affiliation(s)
- HongXia Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - YunFeng Fu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - ZiXiang Guo
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - XiaoDong Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|