1
|
Gong H, Li W, Geng S, Xu T, Sun Y. WTAP, a conserved m 6A writer, can promote the antiviral immunity of Miichthysmiiuy. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105310. [PMID: 39724999 DOI: 10.1016/j.dci.2024.105310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
N6-methyladenosine (m6A) is one of the most prevalent modifications found in eukaryotic mRNA and has been implicated in the regulation of cell proliferation, development, invasion, apoptosis, and immunity. In this study, we first conducted a structural and evolutionary analysis of Wilms' tumour 1-associating protein (WTAP) in vertebrates, and the results showed that WTAP in vertebrates is conserved particularly in mammals and fish. We subsequently investigated the involvement of WTAP in the antiviral immune response of fish and discovered that the expression of Miichthys miiuy (mmiWTAP) decreased in response to stimulation with Siniperca chuatsi rhabdovirus (SCRV) and poly(I:C). Immunofluorescence assays revealed that mmiWTAP was distributed in both the nucleus and the cytoplasm. Furthermore, overexpression of mmiWTAP enhanced the mRNA expression of MAVS and antiviral genes, thereby inhibiting SCRV replication. The beneficial effects of WTAP on MAVS and antiviral factors were disrupted upon introduction of cycloleucine, a methylation inhibitor, suggesting that the positive regulatory role of mmiWTAP in the antiviral immune response is reliant on its methyltransferase activity. These findings provide new insights into the involvement of m6A regulatory networks in fish antiviral immunity.
Collapse
Affiliation(s)
- Hanfu Gong
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenxin Li
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shang Geng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China.
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, China.
| |
Collapse
|
2
|
Li B, Wang Z, Zhou H, Zou J, Yoshida S, Zhou Y. N6-methyladenosine methylation in ophthalmic diseases: From mechanisms to potential applications. Heliyon 2024; 10:e23668. [PMID: 38192819 PMCID: PMC10772099 DOI: 10.1016/j.heliyon.2023.e23668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 01/10/2024] Open
Abstract
N6-methyladenosine (m6A) modification, as the most common modification method in eukaryotes, is widely involved in numerous physiological and pathological processes, such as embryonic development, malignancy, immune regulation, and premature aging. Under pathological conditions of ocular diseases, changes in m6A modification and its metabolism can be detected in aqueous and vitreous humor. At the same time, an increasing number of studies showed that m6A modification is involved in the normal development of eye structures and the occurrence and progress of many ophthalmic diseases, especially ocular neovascular diseases, such as diabetic retinopathy, age-related macular degeneration, and melanoma. In this review, we summarized the latest progress regarding m6A modification in ophthalmic diseases, changes in m6A modification-related enzymes in various pathological states and their upstream and downstream regulatory networks, provided new prospects for m6A modification in ophthalmic diseases and new ideas for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
3
|
Chen Y, Lai Y, Liu R, Yao L, Yu XQ, Wang X. Transcriptome-wide analysis of mRNA N 6 -methyladenosine modification in the embryonic development of Spodoptera frugiperda. INSECT SCIENCE 2023; 30:1229-1244. [PMID: 36606528 DOI: 10.1111/1744-7917.13172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/17/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
N6 -methyladenosine (m6 A) RNA is the most abundant modification of mRNA, and has been demonstrated in regulating various post-transcriptional processes. Many studies have shown that m6 A methylation plays key roles in sex determination, neuronal functions, and embryonic development in Drosophila and mammals. Here, we analyzed transcriptome-wide profile of m6 A modification in the embryonic development of the destructive agricultural pest Spodoptera frugiperda. We found that the 2 key mRNA m6 A methyltransferases SfrMETTL3 and SfrMETTL14 have high homologies with other insects and mammals, suggesting that SfrMETTL3 and SfrMETTL14 may have conserved function among different species. From methylated RNA immunoprecipitation sequencing analysis, we obtained 46 869 m6 A peaks representing 8 587 transcripts in the 2-h embryos after oviposition, and 41 389 m6 A peaks representing 9 230 transcripts in the 24-h embryos. In addition, 5 995 m6 A peaks were differentially expressed including 3 752 upregulated and 2243 downregulated peaks. Functional analysis with Gene Ontology and Kyoto Encyclopedia of Genes and Genomes suggested that differentially expressed m6 A peak-modified genes were enriched in cell and organ development between the 2- and 24-h embryos. By conjoint analysis of methylated RNA immunoprecipitation-seq and RNA-seq data, we found that RNA m6 A methylation may regulate the transcriptional levels of genes related to tissue and organ development from 2- to 24-h embryos. Our study reveals the role of RNA m6 A epigenetic regulation in the embryonic development of S. frugiperda, and provides new insights for the embryonic development of insects.
Collapse
Affiliation(s)
- Yaqing Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yushan Lai
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Runzhou Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Lin Yao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaoyun Wang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
4
|
Xin Y, He Q, Liang H, Zhang K, Guo J, Zhong Q, Chen D, Li J, Liu Y, Chen S. m 6A epitranscriptomic modification regulates neural progenitor-to-glial cell transition in the retina. eLife 2022; 11:79994. [PMID: 36459087 PMCID: PMC9718531 DOI: 10.7554/elife.79994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/13/2022] [Indexed: 12/03/2022] Open
Abstract
N 6-methyladenosine (m6A) is the most prevalent mRNA internal modification and has been shown to regulate the development, physiology, and pathology of various tissues. However, the functions of the m6A epitranscriptome in the visual system remain unclear. In this study, using a retina-specific conditional knockout mouse model, we show that retinas deficient in Mettl3, the core component of the m6A methyltransferase complex, exhibit structural and functional abnormalities beginning at the end of retinogenesis. Immunohistological and single-cell RNA sequencing (scRNA-seq) analyses of retinogenesis processes reveal that retinal progenitor cells (RPCs) and Müller glial cells are the two cell types primarily affected by Mettl3 deficiency. Integrative analyses of scRNA-seq and MeRIP-seq data suggest that m6A fine-tunes the transcriptomic transition from RPCs to Müller cells by promoting the degradation of RPC transcripts, the disruption of which leads to abnormalities in late retinogenesis and likely compromises the glial functions of Müller cells. Overexpression of m6A-regulated RPC transcripts in late RPCs partially recapitulates the Mettl3-deficient retinal phenotype. Collectively, our study reveals an epitranscriptomic mechanism governing progenitor-to-glial cell transition during late retinogenesis, which is essential for the homeostasis of the mature retina. The mechanism revealed in this study might also apply to other nervous systems.
Collapse
Affiliation(s)
- Yanling Xin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Qinghai He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Huilin Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Ke Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jingyi Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Qi Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Dan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jinyan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Shuyi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| |
Collapse
|