1
|
Junyent M, Noori H, De Schepper R, Frajdenberg S, Elsaigh RKAH, McDonald PH, Duckett D, Maudsley S. Unravelling Convergent Signaling Mechanisms Underlying the Aging-Disease Nexus Using Computational Language Analysis. Curr Issues Mol Biol 2025; 47:189. [PMID: 40136443 PMCID: PMC11941692 DOI: 10.3390/cimb47030189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/12/2025] [Accepted: 03/08/2025] [Indexed: 03/27/2025] Open
Abstract
Multiple lines of evidence suggest that multiple pathological conditions and diseases that account for the majority of human mortality are driven by the molecular aging process. At the cellular level, aging can largely be conceptualized to comprise the progressive accumulation of molecular damage, leading to resultant cellular dysfunction. As many diseases, e.g., cancer, coronary heart disease, Chronic obstructive pulmonary disease, Type II diabetes mellitus, or chronic kidney disease, potentially share a common molecular etiology, then the identification of such mechanisms may represent an ideal locus to develop targeted prophylactic agents that can mitigate this disease-driving mechanism. Here, using the input of artificial intelligence systems to generate unbiased disease and aging mechanism profiles, we have aimed to identify key signaling mechanisms that may represent new disease-preventing signaling pathways that are ideal for the creation of disease-preventing chemical interventions. Using a combinatorial informatics approach, we have identified a potential critical mechanism involving the recently identified kinase, Dual specificity tyrosine-phosphorylation-regulated kinase 3 (DYRK3) and the epidermal growth factor receptor (EGFR) that may function as a regulator of the pathological transition of health into disease via the control of cellular fate in response to stressful insults.
Collapse
Affiliation(s)
- Marina Junyent
- Receptor Biology Lab., University of Antwerp, 2610 Wilrijk, Belgium; (M.J.); (H.N.); (R.D.S.); (S.F.); (R.K.A.H.E.)
- IMIM, Hospital del Mar Research Institute, 08003 Barcelona, Spain
| | - Haki Noori
- Receptor Biology Lab., University of Antwerp, 2610 Wilrijk, Belgium; (M.J.); (H.N.); (R.D.S.); (S.F.); (R.K.A.H.E.)
- Department of Chemistry, KU Leuven, Oude Markt 13, 3000 Leuven, Belgium
| | - Robin De Schepper
- Receptor Biology Lab., University of Antwerp, 2610 Wilrijk, Belgium; (M.J.); (H.N.); (R.D.S.); (S.F.); (R.K.A.H.E.)
| | - Shanna Frajdenberg
- Receptor Biology Lab., University of Antwerp, 2610 Wilrijk, Belgium; (M.J.); (H.N.); (R.D.S.); (S.F.); (R.K.A.H.E.)
| | | | - Patricia H. McDonald
- Lexicon Pharmaceuticals Inc., 2445 Technology Forest Blvd Fl 1, The Woodlands, TX 77381, USA;
| | - Derek Duckett
- Department of Drug Discovery, H. Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA;
| | - Stuart Maudsley
- Receptor Biology Lab., University of Antwerp, 2610 Wilrijk, Belgium; (M.J.); (H.N.); (R.D.S.); (S.F.); (R.K.A.H.E.)
- Department of Drug Discovery, H. Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA;
| |
Collapse
|
2
|
Lee YH, Yoon AR, Yun CO, Chung KC. Dual-specificity kinase DYRK3 phosphorylates p62 at the Thr-269 residue and promotes melanoma progression. J Biol Chem 2024; 300:107206. [PMID: 38519031 PMCID: PMC11021969 DOI: 10.1016/j.jbc.2024.107206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024] Open
Abstract
Melanoma is a type of skin cancer that originates in melanin-producing melanocytes. It is considered a multifactorial disease caused by both genetic and environmental factors, such as UV radiation. Dual-specificity tyrosine-phosphorylation-regulated kinase (DYRK) phosphorylates many substrates involved in signaling pathways, cell survival, cell cycle control, differentiation, and neuronal development. However, little is known about the cellular function of DYRK3, one of the five members of the DYRK family. Interestingly, it was observed that the expression of DYRK3, as well as p62 (a multifunctional signaling protein), is highly enhanced in most melanoma cell lines. This study aimed to investigate whether DYRK3 interacts with p62, and how this affects melanoma progression, particularly in melanoma cell lines. We found that DYRK3 directly phosphorylates p62 at the Ser-207 and Thr-269 residue. Phosphorylation at Thr-269 of p62 by DYRK3 increased the interaction of p62 with tumor necrosis factor receptor-associated factor 6 (TRAF6), an already known activator of mammalian target of rapamycin complex 1 (mTORC1) in the mTOR-involved signaling pathways. Moreover, the phosphorylation of p62 at Thr-269 promoted the activation of mTORC1. We also found that DYRK3-mediated phosphorylation of p62 at Thr-269 enhanced the growth of melanoma cell lines and melanoma progression. Conversely, DYRK3 knockdown or blockade of p62-T269 phosphorylation inhibited melanoma growth, colony formation, and cell migration. In conclusion, we demonstrated that DYRK3 phosphorylates p62, positively modulating the p62-TRAF6-mTORC1 pathway in melanoma cells. This finding suggests that DYRK3 suppression may be a novel therapy for preventing melanoma progression by regulating the mTORC1 pathway.
Collapse
Affiliation(s)
- Ye Hyung Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
3
|
Sun J, Zhang Y, Li A, Yu H. Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 3 Expression and Its Correlation with Prognosis and Growth of Serous Ovarian Cancer: Correlation of DYRK3 with Ovarian Cancer Survival. Int J Genomics 2024; 2024:6683202. [PMID: 38529261 PMCID: PMC10963101 DOI: 10.1155/2024/6683202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/26/2023] [Accepted: 01/19/2024] [Indexed: 03/27/2024] Open
Abstract
Background Epithelial ovarian cancer, primarily serous ovarian cancer (SOC), stands as a predominant cause of cancer-related mortality among women globally, emphasizing the urgent need for comprehensive research into its molecular underpinnings. Within this context, the dual-specificity tyrosine phosphorylation-regulated kinase 3 (DYRK3) has emerged as a potential key player with implications for prognosis and tumor progression. Methods This study conducted a meticulous retrospective analysis of 254 SOC cases from our medical center to unravel the prognostic significance of DYRK3. Survival analyses underscored DYRK3 as an independent adverse prognostic factor in SOC, with a hazard ratio of 2.60 (95% CI 1.67-4.07, P < 0.001). Experimental investigations involved DYRK3 knockdown in serous ovarian cancer cell lines (CAOV3 and OVCAR-3) through a shRNA strategy, revealing substantial decreases in cell growth and invasion capabilities. Bioinformatics analyses further hinted at DYRK3's involvement in modulating the tumor immune microenvironment. In vivo experiments with DYRK3-knockdown cell lines validated these findings, demonstrating a notable restriction in the growth of ovarian cancer xenografts. Results Our findings collectively illuminate DYRK3 as a pivotal tumor-promoting oncogene in SOC. Beyond its adverse prognostic implications, DYRK3 knockdown exhibited promising therapeutic potential by impeding cancer progression and potentially influencing the tumor immune microenvironment. Conclusions This study establishes a compelling foundation for further research into DYRK3's intricate role and therapeutic potential in ovarian cancer treatment. As we unravel the complexities surrounding DYRK3, our work not only contributes to the understanding of SOC pathogenesis but also unveils new prospects for targeted therapeutic interventions, holding promise for improved outcomes in ovarian cancer management.
Collapse
Affiliation(s)
- Jia Sun
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, China
| | - Yingzi Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, China
| | - Aijie Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, China
| | - Hao Yu
- Department of Hepatobiliary Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong 271000, China
| |
Collapse
|
4
|
Rozen EJ, Wigglesworth K, Shohet JM. A Novel Druggable Dual-Specificity tYrosine-Regulated Kinase3/Calmodulin Kinase-like Vesicle-Associated Signaling Module with Therapeutic Implications in Neuroblastoma. Biomedicines 2024; 12:197. [PMID: 38255303 PMCID: PMC10813661 DOI: 10.3390/biomedicines12010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
High-risk neuroblastoma is a very aggressive pediatric cancer, accounting for ~15% of childhood cancer mortality. Therefore, novel therapeutic strategies for the treatment of neuroblastoma are urgently sought. Here, we focused on the potential implications of the Dual-specificity tYrosine-Regulated Kinase (DYRK) family and downstream signaling pathways. We used bioinformatic analysis of public datasets from neuroblastoma cohorts and cell lines to search correlations between patient survival and expression of DYRK kinases. Additionally, we performed biochemical, molecular, and cellular approaches to validate and characterize our observations, as well as an in vivo orthotopic murine model of neuroblastoma. We identified the DYRK3 kinase as a critical mediator of neuroblastoma cell proliferation and in vivo tumor growth. DYRK3 has recently emerged as a key regulator of several biomolecular condensates and has been linked to the hypoxic response of neuroblastoma cells. Our data suggest a role for DYRK3 as a regulator of the neuroblastoma-specific protein CAMKV, which is also required for neuroblastoma cell proliferation. CAMKV is a very understudied member of the Ca2+/calmodulin-dependent protein kinase family, originally described as a pseudokinase. We show that CAMKV is phosphorylated by DYRK3, and that inhibition of DYRK3 kinase activity induces CAMKV aggregation, probably mediated by its highly disordered C-terminal half. Importantly, we provide evidence that the DYRK3/CAMKV signaling module could play an important role for the function of the mitotic spindle during cell division. Our data strongly support the idea that inhibition of DYRK3 and/or CAMKV in neuroblastoma cells could constitute an innovative and highly specific intervention to fight against this dreadful cancer.
Collapse
Affiliation(s)
- Esteban J. Rozen
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, CO 80303, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO 80045, USA
- Department of Pediatrics, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01566, USA; (K.W.)
| | - Kim Wigglesworth
- Department of Pediatrics, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01566, USA; (K.W.)
| | - Jason M. Shohet
- Department of Pediatrics, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01566, USA; (K.W.)
| |
Collapse
|
5
|
Zhang T, Zhou C, Guo J, Chang J, Wu H, He J. RTEL1 gene polymorphisms and neuroblastoma risk in Chinese children. BMC Cancer 2023; 23:1145. [PMID: 38001404 PMCID: PMC10675872 DOI: 10.1186/s12885-023-11642-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Neuroblastoma, a neuroendocrine tumor originating from the sympathetic ganglia, is one of the most common malignancies in childhood. RTEL1 is critical in many fundamental cellular processes, such as DNA replication, DNA damage repair, genomic integrity, and telomere stability. Single nucleotide polymorphisms (SNPs) in the RTEL1 gene have been reported to confer susceptibility to multiple cancers, but their contributing roles in neuroblastoma remain unclear. METHODS We conducted a study on 402 neuroblastoma cases and 473 controls to assess the association between four RTEL1 SNPs (rs3761124 T>C, rs3848672 T>C, rs3208008 A>C and rs2297441 G>A) and neuroblastoma susceptibility. RESULTS Our results show that rs3848672 T>C is significantly associated with an increased risk of neuroblastoma [CC vs. TT/TC: adjusted odds ratio (OR)=1.39, 95% confidence interval (CI)=1.02-1.90, P=0.038]. The stratified analysis further indicated that boy carriers of the rs3848672 CC genotype had a higher risk of neuroblastoma, and all carriers had an increased risk of developing neuroblastoma of mediastinum origin. Moreover, the rs2297441 AA genotype increased neuroblastoma risk in girls and predisposed children to neuroblastoma arising from retroperitoneal. CONCLUSION Our study indicated that the rs3848672 CC and rs2297441 AA genotypes of the RTEL1 gene are significantly associated with an increased risk of neuroblastoma in Chinese children in a gender- and site-specific manner.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Clinical Laboratory, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, 317500, Zhejiang, China
| | - Chunlei Zhou
- Department of Pathology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, Jiangsu, China
| | - Jiejie Guo
- Department of Clinical Laboratory, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, 317500, Zhejiang, China
| | - Jiamin Chang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Haiyan Wu
- Department of Pathology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, Jiangsu, China.
| | - Jing He
- Department of Clinical Laboratory, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, 317500, Zhejiang, China.
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
6
|
Qiao R, Zhu Q, Di F, Liu C, Song Y, Zhang J, Xu T, Wang Y, Dai L, Gu W, Han B, Yang R. Hypomethylation of DYRK4 in peripheral blood is associated with increased lung cancer risk. Mol Carcinog 2023; 62:1745-1754. [PMID: 37530470 DOI: 10.1002/mc.23612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 06/01/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths worldwide. It is urgent to identify new biomarkers for the early detection of LC. DNA methylation in peripheral blood has been reported to be associated with cancers. We conducted two independent case-control studies and a nested case-control study (168 LC cases and 167 controls in study Ⅰ, 677 LC cases and 833 controls in study Ⅱ, 147 precancers and 21 controls in the nested case-control study). The methylation levels of DYRK4 CpG sites were measured using mass spectrometry and their correlations with LC were analyzed by logistic regression and nonparametric tests. Bonferroni correction was used for the multiple comparisons. LC-related decreased DYRK4 methylation was discovered in Study I and validated in Study II (the odds ratios [ORs] for the lowest vs. highest quartile of all three DYRK4 CpG sites ranged from 1.64 to 2.09, all p < 0.001). Combining the two studies, hypomethylation of DYRK4 was observed in stage I cases (ORs per -10% methylation ranged from 1.16 to 1.38, all p < 5.9E-04), and could be enhanced by male gender (ORs ranged from 1.77 to 4.17 via interquartile analyses, all p < 0.017). Hypomethylation of DYRK4_A_CpG_2 was significantly correlated with tumor size, length, and stage (p = 0.034, 0.002, and 0.002, respectively) in LC cases. Our study disclosed the association between DYRK4 hypomethylation in peripheral blood and LC, suggesting the feasibility of blood-based DNA methylation as new biomarker for LC detection.
Collapse
Affiliation(s)
- Rong Qiao
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Qiang Zhu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Feifei Di
- Nanjing TANTICA Biotechnology Co. Ltd., Nanjing, China
| | - Chunlan Liu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yakang Song
- Nanjing TANTICA Biotechnology Co. Ltd., Nanjing, China
| | - Jin Zhang
- Nanjing TANTICA Biotechnology Co. Ltd., Nanjing, China
| | - Tian Xu
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yue Wang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Wanjian Gu
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Baohui Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Rongxi Yang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Nanjing TANTICA Biotechnology Co. Ltd., Nanjing, China
| |
Collapse
|
7
|
Gupta M, Kannappan S, Jain M, Douglass D, Shah R, Bose P, Narendran A. Development and validation of a 21-gene prognostic signature in neuroblastoma. Sci Rep 2023; 13:12526. [PMID: 37532697 PMCID: PMC10397261 DOI: 10.1038/s41598-023-37714-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
Survival outcomes for patients with neuroblastoma vary markedly and reliable prognostic markers and risk stratification tools are lacking. We sought to identify and validate a transcriptomic signature capable of predicting risk of mortality in patients with neuroblastoma. The TARGET NBL dataset (n = 243) was used to develop the model and two independent cohorts, E-MTAB-179 (n = 478) and GSE85047 (n = 240) were used as validation sets. EFS was the primary outcome and OS was the secondary outcome of interest for all analysis. We identified a 21-gene signature capable of stratifying neuroblastoma patients into high and low risk groups in the E-MTAB-179 (HR 5.87 [3.83-9.01], p < 0.0001, 5 year AUC 0.827) and GSE85047 (HR 3.74 [2.36-5.92], p < 0.0001, 5 year AUC 0.815) validation cohorts. Moreover, the signature remained independent of known clinicopathological variables, and remained prognostic within clinically important subgroups. Further, the signature was effectively incorporated into a risk model with clinicopathological variables to improve prognostic performance across validation cohorts (Pooled Validation HR 6.93 [4.89-9.83], p < 0.0001, 5 year AUC 0.839). Similar prognostic utility was also demonstrated with OS. The identified signature is a robust independent predictor of EFS and OS outcomes in neuroblastoma patients and can be combined with clinically utilized clinicopathological variables to improve prognostic performance.
Collapse
Affiliation(s)
- Mehul Gupta
- Department of Pediatrics and Oncology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Sunand Kannappan
- Department of Pediatrics and Oncology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Mohit Jain
- Department of Pediatrics and Oncology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - David Douglass
- Department of Pediatrics, Hematology/Oncology Section, Arkansas Children's Hospital, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA
| | - Ravi Shah
- Department of Pediatrics and Oncology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Pinaki Bose
- Departments of Oncology and Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
- Cumming School of Medicine, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Aru Narendran
- Department of Pediatrics and Oncology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
- Departments of Oncology and Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
- Cumming School of Medicine, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|