1
|
Li H, Wei J, Li M, Li Y, Zhang T, Tian J, Liu X, Li K, Lin J. Biological characteristics of Muse cells derived from MenSCs and their application in acute liver injury and intracerebral hemorrhage diseases. Regen Ther 2024; 27:48-62. [PMID: 38496012 PMCID: PMC10940801 DOI: 10.1016/j.reth.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/16/2024] [Accepted: 03/03/2024] [Indexed: 03/19/2024] Open
Abstract
The increasing interest in multilineage differentiating stress-enduring (Muse) cells within the field of regenerative medicine is attributed to their exceptional homing capabilities, prolonged viability in adverse conditions, and enhanced three-germ-layer differentiate ability, surpassing their parent mesenchymal stem cells. Given their abundant sources, non-invasive collection procedure, and periodic availability, human menstrual blood-derived endometrium stem cells (MenSCs) have been extensively investigated as a potential resource for stem cell-based therapies. However, there is no established modality to isolate Muse cells from MenSCs and disparity in gene expression profiles between Muse cells and MenSCs remain unknown. In this study, Muse cells were isolated from MenSCs by long-time trypsin incubation method. Muse cells expressed pluripotency markers and could realize multilineage differentiation in vitro. Compared with MenSCs, Muse cells showed enhanced homing ability and superior therapeutic efficacy in animal models of acute liver injury (ALI) and intracerebral hemorrhage (ICH). Furthermore, the RNA-seq analysis offers insights into the mechanism underlying the disparity in trypsin resistance and migration ability between Muse and MenSCs cells. This research offers a significant foundation for further exploration of cell-based therapies using MenSCs-derived Muse cells in the context of various human diseases, highlighting their promising application in the field of regenerative medicine.
Collapse
Affiliation(s)
- Han Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Jinghui Wei
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Mingzhi Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Yaoqiang Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Tong Zhang
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Jialu Tian
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Xuejia Liu
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Kangjia Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Juntang Lin
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
2
|
Que H, Mai E, Hu Y, Li H, Zheng W, Jiang Y, Han F, Li X, Gong P, Gu J. Multilineage-differentiating stress-enduring cells: a powerful tool for tissue damage repair. Front Cell Dev Biol 2024; 12:1380785. [PMID: 38872932 PMCID: PMC11169632 DOI: 10.3389/fcell.2024.1380785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
Multilineage-differentiating stress-enduring (Muse) cells are a type of pluripotent cell with unique characteristics such as non-tumorigenic and pluripotent differentiation ability. After homing, Muse cells spontaneously differentiate into tissue component cells and supplement damaged/lost cells to participate in tissue repair. Importantly, Muse cells can survive in injured tissue for an extended period, stabilizing and promoting tissue repair. In addition, it has been confirmed that injection of exogenous Muse cells exerts anti-inflammatory, anti-apoptosis, anti-fibrosis, immunomodulatory, and paracrine protective effects in vivo. The discovery of Muse cells is an important breakthrough in the field of regenerative medicine. The article provides a comprehensive review of the characteristics, sources, and potential mechanisms of Muse cells for tissue repair and regeneration. This review serves as a foundation for the further utilization of Muse cells as a key clinical tool in regenerative medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Puyang Gong
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| |
Collapse
|
3
|
Takahashi Y, Kajitani T, Endo T, Nakayashiki A, Inoue T, Niizuma K, Tominaga T. Intravenous Administration of Human Muse Cells Ameliorates Deficits in a Rat Model of Subacute Spinal Cord Injury. Int J Mol Sci 2023; 24:14603. [PMID: 37834052 PMCID: PMC10572998 DOI: 10.3390/ijms241914603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Multilineage-differentiating stress-enduring (Muse) cells are newly established pluripotent stem cells. The aim of the present study was to examine the potential of the systemic administration of Muse cells as an effective treatment for subacute SCI. We intravenously administered the clinical product "CL2020" containing Muse cells to a rat model two weeks after mid-thoracic spinal cord contusion. Eight experimental animals received CL2020, and twelve received the vehicle. Behavioral analyses were conducted over 20 weeks. Histological evaluations were performed. After 20 weeks of observation, diphtheria toxin was administered to three CL2020-treated animals to selectively ablate human cell functions. Hindlimb motor functions significantly improved from 6 to 20 weeks after the administration of CL2020. The cystic cavity was smaller in the CL2020 group. Furthermore, larger numbers of descending 5-HT fibers were preserved in the distal spinal cord. Muse cells in CL2020 were considered to have differentiated into neuronal and neural cells in the injured spinal cord. Neuronal and neural cells were identified in the gray and white matter, respectively. Importantly, these effects were reversed by the selective ablation of human cells by diphtheria toxin. Intravenously administered Muse cells facilitated the therapeutic potential of CL2020 for severe subacute spinal cord injury.
Collapse
Affiliation(s)
- Yoshiharu Takahashi
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, Sendai 980-8572, Japan; (Y.T.); (A.N.)
- Department of Neurosurgery, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Takumi Kajitani
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, Sendai 980-8572, Japan; (Y.T.); (A.N.)
| | - Toshiki Endo
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, Sendai 980-8572, Japan; (Y.T.); (A.N.)
- Department of Neurosurgery, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Atsushi Nakayashiki
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, Sendai 980-8572, Japan; (Y.T.); (A.N.)
| | - Tomoo Inoue
- Department of Neurosurgery, Saitama Red Cross Hospital, Saitama 330-8553, Japan;
| | - Kuniyasu Niizuma
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, Sendai 980-8572, Japan; (Y.T.); (A.N.)
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Medicine, Tohoku University, Sendai 980-8576, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8572, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, Sendai 980-8572, Japan; (Y.T.); (A.N.)
| |
Collapse
|
4
|
Smolinska A, Bzinkowska A, Rybkowska P, Chodkowska M, Sarnowska A. Promising Markers in the Context of Mesenchymal Stem/Stromal Cells Subpopulations with Unique Properties. Stem Cells Int 2023; 2023:1842958. [PMID: 37771549 PMCID: PMC10533301 DOI: 10.1155/2023/1842958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023] Open
Abstract
The heterogeneity of the mesenchymal stem/stromal cells (MSCs) population poses a challenge to researchers and clinicians, especially those observed at the population level. What is more, the lack of precise evidences regarding MSCs developmental origin even further complicate this issue. As the available evidences indicate several possible pathways of MSCs formation, this diverse origin may be reflected in the unique subsets of cells found within the MSCs population. Such populations differ in specialization degree, proliferation, and immunomodulatory properties or exhibit other additional properties such as increased angiogenesis capacity. In this review article, we attempted to identify such outstanding populations according to the specific surface antigens or intracellular markers. Described groups were characterized depending on their specialization and potential therapeutic application. The reports presented here cover a wide variety of properties found in the recent literature, which is quite scarce for many candidates mentioned in this article. Even though the collected information would allow for better targeting of specific subpopulations in regenerative medicine to increase the effectiveness of MSC-based therapies.
Collapse
Affiliation(s)
- Agnieszka Smolinska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Aleksandra Bzinkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Paulina Rybkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Magdalena Chodkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| |
Collapse
|
5
|
Alanazi RF, Alhwity BS, Almahlawi RM, Alatawi BD, Albalawi SA, Albalawi RA, Albalawi AA, Abdel-Maksoud MS, Elsherbiny N. Multilineage Differentiating Stress Enduring (Muse) Cells: A New Era of Stem Cell-Based Therapy. Cells 2023; 12:1676. [PMID: 37443710 PMCID: PMC10340735 DOI: 10.3390/cells12131676] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/03/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
Stem cell transplantation has recently demonstrated a significant therapeutic efficacy in various diseases. Multilineage-differentiating stress-enduring (Muse) cells are stress-tolerant endogenous pluripotent stem cells that were first reported in 2010. Muse cells can be found in the peripheral blood, bone marrow and connective tissue of nearly all body organs. Under basal conditions, they constantly move from the bone marrow to peripheral blood to supply various body organs. However, this rate greatly changes even within the same individual based on physical status and the presence of injury or illness. Muse cells can differentiate into all three-germ-layers, producing tissue-compatible cells with few errors, minimal immune rejection and without forming teratomas. They can also endure hostile environments, supporting their survival in damaged/injured tissues. Additionally, Muse cells express receptors for sphingosine-1-phosphate (S1P), which is a protein produced by damaged/injured tissues. Through the S1P-S1PR2 axis, circulating Muse cells can preferentially migrate to damaged sites following transplantation. In addition, Muse cells possess a unique immune privilege system, facilitating their use without the need for long-term immunosuppressant treatment or human leucocyte antigen matching. Moreover, they exhibit anti-inflammatory, anti-apoptotic and tissue-protective effects. These characteristics circumvent all challenges experienced with mesenchymal stem cells and induced pluripotent stem cells and encourage the wide application of Muse cells in clinical practice. Indeed, Muse cells have the potential to break through the limitations of current cell-based therapies, and many clinical trials have been conducted, applying intravenously administered Muse cells in stroke, myocardial infarction, neurological disorders and acute respiratory distress syndrome (ARDS) related to novel coronavirus (SARS-CoV-2) infection. Herein, we aim to highlight the unique biological properties of Muse cells and to elucidate the advantageous difference between Muse cells and other types of stem cells. Finally, we shed light on their current therapeutic applications and the major obstacles to their clinical implementation from laboratory to clinic.
Collapse
Affiliation(s)
- Raghad F. Alanazi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.F.A.); (B.S.A.); (R.M.A.); (B.D.A.); (S.A.A.); (R.A.A.); (A.A.A.)
| | - Basma S. Alhwity
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.F.A.); (B.S.A.); (R.M.A.); (B.D.A.); (S.A.A.); (R.A.A.); (A.A.A.)
| | - Raghad M. Almahlawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.F.A.); (B.S.A.); (R.M.A.); (B.D.A.); (S.A.A.); (R.A.A.); (A.A.A.)
| | - Bashayer D. Alatawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.F.A.); (B.S.A.); (R.M.A.); (B.D.A.); (S.A.A.); (R.A.A.); (A.A.A.)
| | - Shatha A. Albalawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.F.A.); (B.S.A.); (R.M.A.); (B.D.A.); (S.A.A.); (R.A.A.); (A.A.A.)
| | - Raneem A. Albalawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.F.A.); (B.S.A.); (R.M.A.); (B.D.A.); (S.A.A.); (R.A.A.); (A.A.A.)
| | - Amaal A. Albalawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.F.A.); (B.S.A.); (R.M.A.); (B.D.A.); (S.A.A.); (R.A.A.); (A.A.A.)
| | - Mohamed S. Abdel-Maksoud
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
6
|
Kuroda Y, Oguma Y, Hall K, Dezawa M. Endogenous reparative pluripotent Muse cells with a unique immune privilege system: Hint at a new strategy for controlling acute and chronic inflammation. Front Pharmacol 2022; 13:1027961. [PMID: 36339573 PMCID: PMC9627303 DOI: 10.3389/fphar.2022.1027961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/05/2022] [Indexed: 11/21/2022] Open
Abstract
Multilineage-differentiating stress enduring (Muse) cells, non-tumorigenic endogenous pluripotent stem cells, reside in the bone marrow (BM), peripheral blood, and connective tissue as pluripotent surface marker SSEA-3(+) cells. They express other pluripotent markers, including Nanog, Oct3/4, and Sox2 at moderate levels, differentiate into triploblastic lineages, self-renew at a single cell level, and exhibit anti-inflammatory effects. Cultured mesenchymal stromal cells (MSCs) and fibroblasts contain several percent of SSEA-3(+)-Muse cells. Circulating Muse cells, either endogenous or administered exogenously, selectively accumulate at the damaged site by sensing sphingosine-1-phosphate (S1P), a key mediator of inflammation, produced by damaged cells and replace apoptotic and damaged cells by spontaneously differentiating into multiple cells types that comprise the tissue and repair the tissue. Thus, intravenous injection is the main route for Muse cell treatment, and surgical operation is not necessary. Furthermore, gene introduction or cytokine induction are not required for generating pluripotent or differentiated states prior to treatment. Notably, allogenic and xenogenic Muse cells escape host immune rejection after intravenous injection and survive in the tissue as functioning cells over 6 and ∼2 months, respectively, without immunosuppressant treatment. Since Muse cells survive in the host tissue for extended periods of time, therefore their anti-inflammatory, anti-fibrotic, and trophic effects are long-lasting. These unique characteristics have led to the administration of Muse cells via intravenous drip in clinical trials for stroke, acute myocardial infarction, epidermolysis bullosa, spinal cord injury, neonatal hypoxic ischemic encephalopathy, amyotrophic lateral sclerosis, and COVID-19 acute respiratory distress syndrome without HLA-matching or immunosuppressive treatment.
Collapse
Affiliation(s)
| | | | | | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
7
|
Li H, Wei J, Liu X, Zhang P, Lin J. Muse cells: ushering in a new era of stem cell-based therapy for stroke. Stem Cell Res Ther 2022; 13:421. [PMID: 35986359 PMCID: PMC9389783 DOI: 10.1186/s13287-022-03126-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/07/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractStem cell-based regenerative therapies have recently become promising and advanced for treating stroke. Mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs) have received the most attention for treating stroke because of the outstanding paracrine function of MSCs and the three-germ-layer differentiation ability of iPSCs. However, the unsatisfactory homing ability, differentiation, integration, and survival time in vivo limit the effectiveness of MSCs in regenerative medicine. The inherent tumorigenic property of iPSCs renders complete differentiation necessary before transplantation, which is complicated and expensive and affects the consistency among cell batches. Multilineage differentiating stress-enduring (Muse) cells are natural pluripotent stem cells in the connective tissues of nearly every organ and thus are considered nontumorigenic. A single Muse cell can differentiate into all three-germ-layer, preferentially migrate to damaged sites after transplantation, survive in hostile environments, and spontaneously differentiate into tissue-compatible cells, all of which can compensate for the shortcomings of MSCs and iPSCs. This review summarizes the recent progress in understanding the biological properties of Muse cells and highlights the differences between Muse cells and other types of stem cells. Finally, we summarized the current research progress on the application of Muse cells on stroke and challenges from bench to bedside.
Collapse
|