1
|
Pierro A, Bonucci A, Magalon A, Belle V, Mileo E. Impact of Cellular Crowding on Protein Structural Dynamics Investigated by EPR Spectroscopy. Chem Rev 2024; 124:9873-9898. [PMID: 39213496 DOI: 10.1021/acs.chemrev.3c00951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The study of how the intracellular medium influences protein structural dynamics and protein-protein interactions is a captivating area of research for scientists aiming to comprehend biomolecules in their native environment. As the cellular environment can hardly be reproduced in vitro, direct investigation of biomolecules within cells has attracted growing interest in the past two decades. Among magnetic resonances, site-directed spin labeling coupled to electron paramagnetic resonance spectroscopy (SDSL-EPR) has emerged as a powerful tool for studying the structural properties of biomolecules directly in cells. Since the first in-cell EPR experiment was reported in 2010, substantial progress has been made, and this Review provides a detailed overview of the developments and applications of this spectroscopic technique. The strategies available for preparing a cellular sample and the EPR methods that can be applied to cells will be discussed. The array of spin labels available, along with their strengths and weaknesses in cellular contexts, will also be described. Several examples will illustrate how in-cell EPR can be applied to different biological systems and how the cellular environment affects the structural and dynamic properties of different proteins. Lastly, the Review will focus on the future developments expected to expand the capabilities of this promising technique.
Collapse
Affiliation(s)
- Annalisa Pierro
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Alessio Bonucci
- Aix Marseille University, CNRS, Bioénergétique et Ingénierie des Protéines (BIP), IMM, IM2B, Marseille, France
| | - Axel Magalon
- Aix Marseille University, CNRS, Laboratoire de Chimie Bactérienne (LCB), IMM, IM2B, Marseille, France
| | - Valérie Belle
- Aix Marseille University, CNRS, Bioénergétique et Ingénierie des Protéines (BIP), IMM, IM2B, Marseille, France
| | - Elisabetta Mileo
- Aix Marseille University, CNRS, Bioénergétique et Ingénierie des Protéines (BIP), IMM, IM2B, Marseille, France
| |
Collapse
|
2
|
Torricella F, Vitali V, Banci L. A systematic study on the effect of protonation and deuteration on electron spin Tm/ T2 in a cellular context. Phys Chem Chem Phys 2024. [PMID: 39037427 DOI: 10.1039/d4cp00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
In recent years, DEER experiments in pulsed EPR have garnered interest for their precise distance distribution insights in cellular and buffer setups. These measurements linked to electron spin Tm/T2 values of the labelled sample are impacted by the cellular environment being fully protonated or deuterated, as demonstrated in the present study.
Collapse
Affiliation(s)
- Francesco Torricella
- Magnetic Resonance Center, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy.
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, Maryland 20892-0520, USA
| | - Valentina Vitali
- Magnetic Resonance Center, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy.
- Dipartimento di Chimica, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic Resonance Center, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy.
- Consorzio Interuniversitario Risonanza Magnetiche di Metallo Proteine, 50019 Sesto Fiorentino, Italy
- Dipartimento di Chimica, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
3
|
Ben‐Ishay Y, Barak Y, Feintuch A, Ouari O, Pierro A, Mileo E, Su X, Goldfarb D. Exploring the dynamics and structure of PpiB in living Escherichia coli cells using electron paramagnetic resonance spectroscopy. Protein Sci 2024; 33:e4903. [PMID: 38358137 PMCID: PMC10868451 DOI: 10.1002/pro.4903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024]
Abstract
The combined effects of the cellular environment on proteins led to the definition of a fifth level of protein structural organization termed quinary structure. To explore the implication of potential quinary structure for globular proteins, we studied the dynamics and conformations of Escherichia coli (E. coli) peptidyl-prolyl cis/trans isomerase B (PpiB) in E. coli cells. PpiB plays a major role in maturation and regulation of folded proteins by catalyzing the cis/trans isomerization of the proline imidic peptide bond. We applied electron paramagnetic resonance (EPR) techniques, utilizing both Gadolinium (Gd(III)) and nitroxide spin labels. In addition to using standard spin labeling approaches with genetically engineered cysteines, we incorporated an unnatural amino acid to achieve Gd(III)-nitroxide orthogonal labeling. We probed PpiB's residue-specific dynamics by X-band continuous wave EPR at ambient temperatures and its structure by double electron-electron resonance (DEER) on frozen samples. PpiB was delivered to E. coli cells by electroporation. We report a significant decrease in the dynamics induced by the cellular environment for two chosen labeling positions. These changes could not be reproduced by adding crowding agents and cell extracts. Concomitantly, we report a broadening of the distance distribution in E. coli, determined by Gd(III)-Gd(III) DEER measurements, as compared with solution and human HeLa cells. This suggests an increase in the number of PpiB conformations present in E. coli cells, possibly due to interactions with other cell components, which also contributes to the reduction in mobility and suggests the presence of a quinary structure.
Collapse
Affiliation(s)
- Yasmin Ben‐Ishay
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovotIsrael
| | - Yoav Barak
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovotIsrael
| | - Akiva Feintuch
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovotIsrael
| | - Olivier Ouari
- CNRS, ICR, Institut de Chimie RadicalaireAix‐Marseille UniversitéMarseilleFrance
| | - Annalisa Pierro
- CNRS, BIP, Laboratoire de Bioénergétique et Ingénierie des ProtéinesAix Marseille UniversitéMarseilleFrance
- Present address:
Konstanz Research School Chemical Biology, Department of ChemistryUniversity of KonstanzKonstanzGermany
| | - Elisabetta Mileo
- CNRS, BIP, Laboratoire de Bioénergétique et Ingénierie des ProtéinesAix Marseille UniversitéMarseilleFrance
| | - Xun‐Cheng Su
- State Key Laboratory of Elemento‐organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular RecognitionCollege of Chemistry, Nankai UniversityTianjinChina
| | - Daniella Goldfarb
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
4
|
Pierro A, Tamburrini KC, Leguenno H, Gerbaud G, Etienne E, Guigliarelli B, Belle V, Zambelli B, Mileo E. In-cell investigation of the conformational landscape of the GTPase UreG by SDSL-EPR. iScience 2023; 26:107855. [PMID: 37766968 PMCID: PMC10520941 DOI: 10.1016/j.isci.2023.107855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/07/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
UreG is a cytosolic GTPase involved in the maturation network of urease, an Ni-containing bacterial enzyme. Previous investigations in vitro showed that UreG features a flexible tertiary organization, making this protein the first enzyme discovered to be intrinsically disordered. To determine whether this heterogeneous behavior is maintained in the protein natural environment, UreG structural dynamics was investigated directly in intact bacteria by in-cell EPR. This approach, based on site-directed spin labeling coupled to electron paramagnetic resonance (SDSL-EPR) spectroscopy, enables the study of proteins in their native environment. The results show that UreG maintains heterogeneous structural landscape in-cell, existing in a conformational ensemble of two major conformers, showing either random coil-like or compact properties. These data support the physiological relevance of the intrinsically disordered nature of UreG and indicates a role of protein flexibility for this specific enzyme, possibly related to the regulation of promiscuous protein interactions for metal ion delivery.
Collapse
Affiliation(s)
- Annalisa Pierro
- Aix Marseille Univ, CNRS, BIP, IMM, 13009 Marseille, France
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Ketty Concetta Tamburrini
- Aix Marseille Univ, CNRS, AFMB, 13009 Marseille, France
- INRAE, Aix Marseille Univ, BBF, 13009 Marseille, France
| | - Hugo Leguenno
- Aix Marseille Univ, CNRS, IMM, Microscopy Core Facility, 13009 Marseille, France
| | | | | | | | - Valérie Belle
- Aix Marseille Univ, CNRS, BIP, IMM, 13009 Marseille, France
| | - Barbara Zambelli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | | |
Collapse
|
5
|
Pierro A, Drescher M. Dance with spins: site-directed spin labeling coupled to electron paramagnetic resonance spectroscopy directly inside cells. Chem Commun (Camb) 2023; 59:1274-1284. [PMID: 36633152 PMCID: PMC9890500 DOI: 10.1039/d2cc05907j] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023]
Abstract
Depicting how biomolecules move and interact within their physiological environment is one of the hottest topics of structural biology. This Feature Article gives an overview of the most recent advances in Site-directed Spin Labeling coupled to Electron Paramagnetic Resonance spectroscopy (SDSL-EPR) to study biomolecules in living cells. The high sensitivity, the virtual absence of background, and the versatility of spin-labeling strategies make this approach one of the most promising techniques for the study of biomolecules in physiologically relevant environments. After presenting the milestones achieved in this field, we present a summary of the future goals and ambitions of this community.
Collapse
Affiliation(s)
- Annalisa Pierro
- Department of Chemistry, University of Konstanz, and Konstanz Research School Chemical Biology, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Malte Drescher
- Department of Chemistry, University of Konstanz, and Konstanz Research School Chemical Biology, Universitätsstraße 10, 78457 Konstanz, Germany.
| |
Collapse
|
6
|
Pierro A, Bonucci A, Normanno D, Ansaldi M, Pilet E, Ouari O, Guigliarelli B, Etienne E, Gerbaud G, Magalon A, Belle V, Mileo E. Probing the Structural Dynamics of a Bacterial Chaperone in Its Native Environment by Nitroxide‐Based EPR Spectroscopy. Chemistry 2022; 28:e202202249. [DOI: 10.1002/chem.202202249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Annalisa Pierro
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
- Department of Chemistry University of Konstanz, and Konstanz Research School Chemical Biology 78457 Konstanz Germany
| | - Alessio Bonucci
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Davide Normanno
- Aix Marseille Univ CNRS, Inserm Institut Paoli-Calmettes, CRCM Centre de Recherche en Cancérologie de Marseille 13273 Marseille France
- Univ Montpellier CNRS, IGH Institut de Génétique Humaine 34396 Montpellier France
| | - Mireille Ansaldi
- Aix Marseille Univ CNRS, LCB Laboratoire de Chimie Bacterienne, IMM 13009 Marseille France
| | - Eric Pilet
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Olivier Ouari
- Aix Marseille Univ CNRS, ICR Institut de Chimie Radicalaire 13397 Marseille France
| | - Bruno Guigliarelli
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Emilien Etienne
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Guillaume Gerbaud
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Axel Magalon
- Aix Marseille Univ CNRS, LCB Laboratoire de Chimie Bacterienne, IMM 13009 Marseille France
| | - Valérie Belle
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Elisabetta Mileo
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| |
Collapse
|
7
|
Protein delivery to living cells by thermal stimulation for biophysical investigation. Sci Rep 2022; 12:17190. [PMID: 36229511 PMCID: PMC9561116 DOI: 10.1038/s41598-022-21103-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/22/2022] [Indexed: 01/05/2023] Open
Abstract
Studying biomolecules in their native environment represents the ideal sample condition for structural biology investigations. Here we present a novel protocol which allows to delivery proteins into eukaryotic cells through a mild thermal stimulation. The data presented herein show the efficacy of this approach for delivering proteins in the intracellular environment of mammalian cells reaching a concentration range suitable for successfully applying biophysical methods, such as double electron electron resonance (DEER) measurements for characterising protein conformations.
Collapse
|
8
|
Goldfarb D. Exploring protein conformations in vitro and in cell with EPR distance measurements. Curr Opin Struct Biol 2022; 75:102398. [PMID: 35667279 DOI: 10.1016/j.sbi.2022.102398] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/20/2022] [Accepted: 04/30/2022] [Indexed: 11/18/2022]
Abstract
The electron-electron double resonance (DEER) method, which provides distance distributions between two spin labels, attached site specifically to biomolecules (proteins and nucleic acids), is currently a well-recognized biophysical tool in structural biology. The most commonly used spin labels are based on nitroxide stable radicals, conjugated to the proteins primarily via native or engineered cysteine residues. However, in recent years, new spin labels, along with different labeling chemistries, have been introduced, driven in part by the desire to study structural and dynamical properties of biomolecules in their native environment, the cell. This mini-review focuses on these new spin labels, which allow for DEER on orthogonal spin labels, and on the state of the art methods for in-cell DEER distance measurements.
Collapse
Affiliation(s)
- Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 761001, Israel
| |
Collapse
|
9
|
Luchinat E, Cremonini M, Banci L. Radio Signals from Live Cells: The Coming of Age of In-Cell Solution NMR. Chem Rev 2022; 122:9267-9306. [PMID: 35061391 PMCID: PMC9136931 DOI: 10.1021/acs.chemrev.1c00790] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 12/12/2022]
Abstract
A detailed knowledge of the complex processes that make cells and organisms alive is fundamental in order to understand diseases and to develop novel drugs and therapeutic treatments. To this aim, biological macromolecules should ideally be characterized at atomic resolution directly within the cellular environment. Among the existing structural techniques, solution NMR stands out as the only one able to investigate at high resolution the structure and dynamic behavior of macromolecules directly in living cells. With the advent of more sensitive NMR hardware and new biotechnological tools, modern in-cell NMR approaches have been established since the early 2000s. At the coming of age of in-cell NMR, we provide a detailed overview of its developments and applications in the 20 years that followed its inception. We review the existing approaches for cell sample preparation and isotopic labeling, the application of in-cell NMR to important biological questions, and the development of NMR bioreactor devices, which greatly increase the lifetime of the cells allowing real-time monitoring of intracellular metabolites and proteins. Finally, we share our thoughts on the future perspectives of the in-cell NMR methodology.
Collapse
Affiliation(s)
- Enrico Luchinat
- Dipartimento
di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum−Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Matteo Cremonini
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Dipartimento
di Chimica, Università degli Studi
di Firenze, Via della
Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
10
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|