1
|
He M, Liang Y, Nie X, Zhang T, Zhao D, Zhang J, Lin H, Zeng Z, Song X, Wang Y, Ran S, Zhao S, Chen T, Zhang C, Feng Z. p300 maintains primordial follicle activation by repressing VEGFA transcription. Am J Physiol Cell Physiol 2025; 328:C514-C527. [PMID: 39510134 DOI: 10.1152/ajpcell.00198.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
During the reproductive life, most primordial follicles (PFs) remain dormant for years or decades, while some are progressively activated for development. Misactivation of primordial follicles can cause ovarian diseases, for example, premature ovarian insufficiency (POI). Our results show that p300 expression increased with primordial follicle activation. Using a p300 inhibitor resulted in premature activation of primordial follicles in cultured mouse ovaries. Conversely, the ratio of primordial follicle activation was markedly decreased upon culturing with the p300 agonist. Furthermore, p300 regulated primordial follicle activation by inhibiting Vegfa transcription in granulosa cells. In addition, this study was extended to potential clinical applications, showing that short-term treatment with a p300 inhibitor in vitro significantly increased primordial follicle activation in newborn mouse ovaries after the renal subcapsular transplantation in female NSG mice. Our results revealed that p300 controls the activation of primordial follicles in mammalian ovaries.NEW & NOTEWORTHY In this study, our results show that p300 expression increases with primordial follicle activation. A p300 inhibitor results in premature activation of primordial follicles in cultured mouse ovaries. Conversely, the ratio of primordial follicle activation markedly decreases upon culturing with the p300 agonist. Furthermore, p300 regulates primordial follicle activation by inhibiting Vegfa transcription in granulosa cells.
Collapse
Affiliation(s)
- Meina He
- Department of Neurology, the Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
- Engineering Research Center for Molecular Medicine, Department of Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, People's Republic of China
| | - Yaoyun Liang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Xiaoran Nie
- Engineering Research Center for Molecular Medicine, Department of Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, People's Republic of China
| | - Tuo Zhang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, People's Republic of China
| | - Danqing Zhao
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Jixian Zhang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, People's Republic of China
| | - Huan Lin
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, People's Republic of China
| | - Zhirui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
| | - Xingyu Song
- Engineering Research Center for Molecular Medicine, Department of Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
| | - Yitong Wang
- Engineering Research Center for Molecular Medicine, Department of Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
| | - Shiling Ran
- Engineering Research Center for Molecular Medicine, Department of Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
| | - Shuyun Zhao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Tengxiang Chen
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, People's Republic of China
| | - Chunlin Zhang
- Engineering Research Center for Molecular Medicine, Department of Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, People's Republic of China
| | - Zhanhui Feng
- Department of Neurology, the Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| |
Collapse
|
2
|
Yao ZL, Wang X, Hu CL, Chen FX, Chen HJ, Jiang SJ, Zhao Y, Ji XS. A single-nucleus transcriptomic atlas characterizes cell types and their molecular features in the ovary of adult Nile tilapia. JOURNAL OF FISH BIOLOGY 2024; 105:1800-1810. [PMID: 39235098 DOI: 10.1111/jfb.15911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
In fish species, there is limited analysis of signature transcriptome profiles at the single-cell level in gonadal cells. Here, the molecular signatures of distinct ovarian cell categories in adult Nile tilapia (Oreochromis niloticus) were analysed using single-nucleus RNA sequencing (snRNA-seq). We identified four cell types (oogonia, oocytes, granulosa cell, and thecal cell) based on their specifically expressed genes and biological functions. Similarly, we found some key pathways involved in ovarian development that may affect germline-somatic interactions. A cell-to-cell communication network between the distinct cell types was constructed. We found that the bidirectional communication is mandatory for the development of germ cells and somatic cells in fish ovaries, and the granulosa cells and thecal cells play a central regulating role in the cell network in fish ovary. Additionally, we identified some novel candidate marker genes for various types of ovarian cells and also validated them using in situ hybridization. Our work reveals an ovarian atlas at the cellular and molecular levels and contributes to providing insights into oogenesis and gonad development in fish.
Collapse
Affiliation(s)
- Zhi Lei Yao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Xiao Wang
- Library, Shandong Agricultural University, Tai'an, China
| | - Chun Lei Hu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Fu Xiao Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Hong Ju Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Shi-Jin Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Yan Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Xiang Shan Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
3
|
Wang J, Zhang Y, Gao J, Feng G, Liu C, Li X, Li P, Liu Z, Lu F, Wang L, Li W, Zhou Q, Liu Y. Alternative splicing of CARM1 regulated by LincGET-guided paraspeckles biases the first cell fate in mammalian early embryos. Nat Struct Mol Biol 2024; 31:1341-1354. [PMID: 38658621 PMCID: PMC11402786 DOI: 10.1038/s41594-024-01292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
The heterogeneity of CARM1 controls first cell fate bias during early mouse development. However, how this heterogeneity is established is unknown. Here, we show that Carm1 mRNA is of a variety of specific exon-skipping splicing (ESS) isoforms in mouse two-cell to four-cell embryos that contribute to CARM1 heterogeneity. Disruption of paraspeckles promotes the ESS of Carm1 precursor mRNAs (pre-mRNAs). LincGET, but not Neat1, is required for paraspeckle assembly and inhibits the ESS of Carm1 pre-mRNAs in mouse two-cell to four-cell embryos. We further find that LincGET recruits paraspeckles to the Carm1 gene locus through HNRNPU. Interestingly, PCBP1 binds the Carm1 pre-mRNAs and promotes its ESS in the absence of LincGET. Finally, we find that the ESS seen in mouse two-cell to four-cell embryos decreases CARM1 protein levels and leads to trophectoderm fate bias. Our findings demonstrate that alternative splicing of CARM1 has an important role in first cell fate determination.
Collapse
Affiliation(s)
- Jiaqiang Wang
- College of Life Science, Northeast Agricultural University, Harbin, China.
| | - Yiwei Zhang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Jiaze Gao
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xueke Li
- College of Life Science, Northeast Agricultural University, Harbin, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Li
- College of Life Science, Northeast Agricultural University, Harbin, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Falong Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Leyun Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| | - Yusheng Liu
- College of Life Science, Northeast Forestry University, Harbin, China.
| |
Collapse
|
4
|
Wei Y, Xu Z, Hu M, Wu Z, Liu A, Czajkowsky DM, Guo Y, Shao Z. Time-resolved transcriptomics of mouse gastric pit cells during postnatal development reveals features distinct from whole stomach development. FEBS Lett 2023; 597:418-426. [PMID: 36285639 DOI: 10.1002/1873-3468.14525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
Whole-organ transcriptomic analyses have emerged as a common method for characterizing developmental transitions in mammalian organs. However, it is unclear if all cell types in an organ follow the whole-organ defined developmental trajectory. Recently, a postnatal two-stage developmental process was described for the mouse stomach. Here, using laser capture microdissection to obtain in situ transcriptomic data, we show that mouse gastric pit cells exhibit four postnatal developmental stages. Interestingly, early stages are characterized by the up-regulation of genes associated with metabolism, a functionality not typically associated with pit cells. Hence, beyond revealing that not all constituent cells develop according to the whole-organ determined pathway, these results broaden our understanding of the pit cell phenotypic landscape during stomach development.
Collapse
Affiliation(s)
- Ying Wei
- School of Biomedical Engineering, State Key Laboratory for Oncogenes and Bio-ID Center, Shanghai Jiao Tong University, China
| | - Zeqian Xu
- School of Biomedical Engineering, State Key Laboratory for Oncogenes and Bio-ID Center, Shanghai Jiao Tong University, China
| | - Miaomiao Hu
- School of Biomedical Engineering, State Key Laboratory for Oncogenes and Bio-ID Center, Shanghai Jiao Tong University, China
| | - Zhongqin Wu
- School of Biomedical Engineering, State Key Laboratory for Oncogenes and Bio-ID Center, Shanghai Jiao Tong University, China
| | - Axian Liu
- School of Biomedical Engineering, State Key Laboratory for Oncogenes and Bio-ID Center, Shanghai Jiao Tong University, China
| | - Daniel M Czajkowsky
- School of Biomedical Engineering, State Key Laboratory for Oncogenes and Bio-ID Center, Shanghai Jiao Tong University, China
| | - Yan Guo
- School of Biomedical Engineering, State Key Laboratory for Oncogenes and Bio-ID Center, Shanghai Jiao Tong University, China
| | - Zhifeng Shao
- School of Biomedical Engineering, State Key Laboratory for Oncogenes and Bio-ID Center, Shanghai Jiao Tong University, China
| |
Collapse
|
5
|
Lu W, Gao Q, Wei J, Xie W, Zhang H, Yuan Z, Han Y, Weng Q. Seasonal changes in endoplasmic reticulum stress and ovarian steroidogenesis in the muskrats ( Ondatra zibethicus). Front Endocrinol (Lausanne) 2023; 14:1123699. [PMID: 36824363 PMCID: PMC9941330 DOI: 10.3389/fendo.2023.1123699] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Many studies have shown roles for endoplasmic reticulum stress (ERS)/unfolded protein response (UPR) signaling cascades with ovarian folliculogenesis, and oocyte maturation. In this study, we investigated seasonal changes in ERS and ovarian steroidogenesis in the muskrats (Ondatra zibethicus) during the breeding season (BS) and non-breeding season (NBS). There were noticeable seasonal variations in the weight and size of muskrat ovaries with values higher in the BS than that in NBS. The circulating luteinizing hormone (LH), follicle-stimulating hormone (FSH), 17β-estradiol, and progesterone of the female muskrats were higher during the BS. The RNA-seq data of ovaries during different seasons revealed 2580 differentially expressed genes, further analysis showed a prominent enrichment of ERS-related pathways and ovarian steroidogenesis pathway. Immunohistochemical results showed that GRP78 and steroidogenic enzymes (P450scc, 3β-HSD, P450c17, and P450arom) existed in the various kinds of cells in muskrat ovaries during the BS and NBS. In ovaries from the BS, the mRNA levels of P450scc, P450arom, P450c17, and 3β-HSD were considerably higher. Furthermore, the expression levels of oxidative stress-related genes (SOD2, CAT, and GPX1) and UPR signal genes (Bip/GRP78, ATF4, ATF6, and XBP1s) were increased strikingly higher during the BS in comparison with the NBS. However, the mRNA levels of CCAAT-enhancer-binding protein homologous protein (CHOP) and caspase-3 had no considerable difference between the BS and NBS. Taken together, these results suggested that UPR signaling associated with the seasonal changes in ovarian steroidogenesis is activated in the BS and the delicate balance in redox regulation is important for seasonal reproduction in the muskrats.
Collapse
Affiliation(s)
- Wenjing Lu
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
| | - Qingjing Gao
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
| | - Jinlan Wei
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqian Xie
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
| | - Haolin Zhang
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
| | - Zhengrong Yuan
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
| | - Yingying Han
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
| | - Qiang Weng
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Qiang Weng,
| |
Collapse
|
6
|
Gong X, Zhang Y, Ai J, Li K. Application of Single-Cell RNA Sequencing in Ovarian Development. Biomolecules 2022; 13:47. [PMID: 36671432 PMCID: PMC9855652 DOI: 10.3390/biom13010047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
The ovary is a female reproductive organ that plays a key role in fertility and the maintenance of endocrine homeostasis, which is of great importance to women's health. It is characterized by a high heterogeneity, with different cellular subpopulations primarily containing oocytes, granulosa cells, stromal cells, endothelial cells, vascular smooth muscle cells, and diverse immune cell types. Each has unique and important functions. From the fetal period to old age, the ovary experiences continuous structural and functional changes, with the gene expression of each cell type undergoing dramatic changes. In addition, ovarian development strongly relies on the communication between germ and somatic cells. Compared to traditional bulk RNA sequencing techniques, the single-cell RNA sequencing (scRNA-seq) approach has substantial advantages in analyzing individual cells within an ever-changing and complicated tissue, classifying them into cell types, characterizing single cells, delineating the cellular developmental trajectory, and studying cell-to-cell interactions. In this review, we present single-cell transcriptome mapping of the ovary, summarize the characteristics of the important constituent cells of the ovary and the critical cellular developmental processes, and describe key signaling pathways for cell-to-cell communication in the ovary, as revealed by scRNA-seq. This review will undoubtedly improve our understanding of the characteristics of ovarian cells and development, thus enabling the identification of novel therapeutic targets for ovarian-related diseases.
Collapse
Affiliation(s)
| | | | - Jihui Ai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kezhen Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|