1
|
Li Y, Cui J, Xiao D, Cao B, Wei J, Wang Q, Zong J, Wang J, Song M. Advances in arthropod-inspired bionic materials for wound healing. Mater Today Bio 2024; 29:101307. [PMID: 39554840 PMCID: PMC11567928 DOI: 10.1016/j.mtbio.2024.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/21/2024] [Accepted: 10/20/2024] [Indexed: 11/19/2024] Open
Abstract
Arthropods contain lots of valuable bionic information from the composition to the special structure of the body. In particular, the rapid self-healing ability and antibacterial properties are amazing. Biomimetic materials for arthropods have been helpful methods for wound management. Here, we have identified four major dimensions needed to create biomimetic materials for arthropods, including ingredient, behavior, structure and internal reaction. According to different dimensions, we classify and introduce the reported arthropod biomimetic materials. Antibacterial, hemostatic and healing promotion are the main functions of the active compositions of arthropods developed by humans, and most of them play a drug effect. We believe that an ideal biomimetic material of arthropod should have the effect on promoting wound healing through the advantages of structure and composition. The special macroscopic and microscopic structure of the epidermis may provide good mechanical support for biomimetic materials. The drug release regularity in the bionic materials can be referred to the aggressive and secretory behavior of arthropods. The synthesis of substances in arthropods is also noteworthy, and we can learn these special reactions to complete the fast preparation of materials. Arthropod-inspired bionic materials have broad innovation and application prospects in the field of wound repair.
Collapse
Affiliation(s)
- Yuchen Li
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Jiaming Cui
- Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Di Xiao
- Liuzhou Traditional Chinese Medical Hospital, Guangxi University of Chinese Medicine, Liuzhou, Guangxi, China
| | - Bixuan Cao
- Department of Orthopedics, the Third Affiliated Hospital of Anhui Medical University, the First People's Hospital of Hefei, Hefei, Anhui, China
| | - Jing Wei
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Qian Wang
- Department of Orthopaedics, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Junwei Zong
- Department of Orthopaedics, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jinwu Wang
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingzhi Song
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Du W, Wang Z, Han M, Zheng Y, Tao B, Pan N, Bao G, Zhuang W, Quan R. Astragalus polysaccharide-containing 3D-printed scaffold for traumatized skin repair and proteomic study. J Cell Mol Med 2024; 28:e70023. [PMID: 39158533 PMCID: PMC11331928 DOI: 10.1111/jcmm.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024] Open
Abstract
Astragalus polysaccharide-containing 3D-printed scaffold shows great potential in traumatic skin repair. This study aimed to investigate its repairing effect and to combine it with proteomic technology to deeply resolve the related protein expression changes. Thirty SD rats were divided randomly into three groups (n = 10 per group): the sham-operated group, the model group and the scaffold group. Subsequently, we conducted a comparative analysis on trauma blood perfusion, trauma healing rate, histological changes, the expression of the YAP/TAZ signalling pathway and angiogenesis-related factors. Additionally, neonatal skin tissues were collected for proteomic analysis. The blood perfusion volume and wound healing recovery in the scaffold group were better than that in the model group (p < 0.05). The protein expression of STAT3, YAP, TAZ and expression of vascular-related factor A (VEGFA) in the scaffold group was higher than that in the model group (p < 0.05). Proteomic analysis showed that there were 207 differential proteins common to the three groups. Mitochondrial function, immune response, redox response, extracellular gap and ATP metabolic process were the main groups of differential protein changes. Oxidative phosphorylation, metabolic pathway, carbon metabolism, calcium signalling pathway, etc. were the main differential metabolic pathway change groups. Astragalus polysaccharide-containing 3D-printed scaffold had certain reversals of protein disorder. The Astragalus polysaccharide-containing 3D-printed scaffold may promote the VEGFs by activating the YAP/TAZ signalling pathway with the help of STAT3 into the nucleus, accelerating early angiogenesis of the trauma, correcting the protein disorder of the trauma and ultimately realizing the repair of the wound.
Collapse
Affiliation(s)
- Weibin Du
- Research Institute of OrthopedicsThe Jiangnan Hospital affiliated to Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineHangzhouZhejiangChina
| | - Zhenwei Wang
- Research Institute of OrthopedicsThe Jiangnan Hospital affiliated to Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineHangzhouZhejiangChina
| | - Meichun Han
- Research Institute of OrthopedicsThe Jiangnan Hospital affiliated to Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineHangzhouZhejiangChina
| | - Yang Zheng
- Research Institute of OrthopedicsThe Jiangnan Hospital affiliated to Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineHangzhouZhejiangChina
| | - Bowen Tao
- Health Science Center, Ningbo UniversityNingboZhejiangChina
| | - Ningfang Pan
- Research Institute of OrthopedicsThe Jiangnan Hospital affiliated to Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineHangzhouZhejiangChina
| | - Guanai Bao
- Pain and Rehabilitation MedicineZhejiang Cancer HospitalHangzhouZhejiangChina
| | - Wei Zhuang
- Research Institute of OrthopedicsThe Jiangnan Hospital affiliated to Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineHangzhouZhejiangChina
| | - Renfu Quan
- Research Institute of OrthopedicsThe Jiangnan Hospital affiliated to Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineHangzhouZhejiangChina
| |
Collapse
|
3
|
Veiga A, Silva IV, Dias JR, Alves NM, Oliveira AL, Ribeiro VP. Streamlining Skin Regeneration: A Ready-To-Use Silk Bilayer Wound Dressing. Gels 2024; 10:439. [PMID: 39057462 PMCID: PMC11276312 DOI: 10.3390/gels10070439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Silk proteins have been highlighted in the past decade for tissue engineering (TE) and skin regeneration due to their biocompatibility, biodegradability, and exceptional mechanical properties. While silk fibroin (SF) has high structural and mechanical stability with high potential as an external protective layer, traditionally discarded sericin (SS) has shown great potential as a natural-based hydrogel, promoting cell-cell interactions, making it an ideal material for direct wound contact. In this context, the present study proposes a new wound dressing approach by developing an SS/SF bilayer construct for full-thickness exudative wounds. The processing methodology implemented included an innovation element and the cryopreservation of the SS intrinsic secondary structure, followed by rehydration to produce a hydrogel layer, which was integrated with a salt-leached SF scaffold to produce a bilayer structure. In addition, a sterilization protocol was developed using supercritical technology (sCO2) to allow an industrial scale-up. The resulting bilayer material presented high porosity (>85%) and interconnectivity while promoting cell adhesion, proliferation, and infiltration of human dermal fibroblasts (HDFs). SS and SF exhibit distinct secondary structures, pore sizes, and swelling properties, opening new possibilities for dual-phased systems that accommodate the different needs of a wound during the healing process. The innovative SS hydrogel layer highlights the transformative potential of the proposed bilayer system for biomedical therapeutics and TE, offering insights into novel wound dressing fabrication.
Collapse
Affiliation(s)
- Anabela Veiga
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.V.); (I.V.S.); (V.P.R.)
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology & Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Inês V. Silva
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.V.); (I.V.S.); (V.P.R.)
| | - Juliana R. Dias
- Centre for Rapid and Sustainable Product Development, Instituto Politécnico de Leiria, 2430-028 Marinha Grande, Portugal; (J.R.D.); (N.M.A.)
| | - Nuno M. Alves
- Centre for Rapid and Sustainable Product Development, Instituto Politécnico de Leiria, 2430-028 Marinha Grande, Portugal; (J.R.D.); (N.M.A.)
| | - Ana L. Oliveira
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.V.); (I.V.S.); (V.P.R.)
| | - Viviana P. Ribeiro
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.V.); (I.V.S.); (V.P.R.)
| |
Collapse
|
4
|
Strenge JT, Smeets R, Nemati F, Fuest S, Rhode SC, Stuermer EK. Biodegradable Silk Fibroin Matrices for Wound Closure in a Human 3D Ex Vivo Approach. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3004. [PMID: 38930373 PMCID: PMC11205513 DOI: 10.3390/ma17123004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
In this study, the potential of silk fibroin biomaterials for enhancing wound healing is explored, focusing on their integration into a human 3D ex vivo wound model derived from abdominoplasties. For this purpose, cast silk fibroin membranes and electrospun nonwoven matrices from Bombyx mori silk cocoons were compared to untreated controls over 20 days. Keratinocyte behavior and wound healing were analyzed qualitatively and quantitatively by histomorphometric and immune histochemical methods (HE, Ki67, TUNEL). Findings reveal rapid keratinocyte proliferation on both silk fibroin membrane and nonwoven matrices, along with enhanced infiltration in the matrix, suggesting improved early wound closure. Silk fibroin membranes exhibited a significantly improved early regeneration, followed by nonwoven matrices (p < 0.05) compared to untreated wounds, resulting in the formation of multi-layered epidermal structures with complete regeneration. Overall, the materials demonstrated excellent biocompatibility, supporting cell activity with no signs of increased apoptosis or early degradation. These results underscore silk fibroin's potential in clinical wound care, particularly in tissue integration and re-epithelialization, offering valuable insights for advanced and-as a result of the electrospinning technique-individual wound care development. Furthermore, the use of an ex vivo wound model appears to be a viable option for pre-clinical testing.
Collapse
Affiliation(s)
- Jan Tinson Strenge
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.T.S.); (R.S.)
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.T.S.); (R.S.)
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (F.N.); (S.F.)
| | - Fateme Nemati
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (F.N.); (S.F.)
- Institute of Bioprocess and Biosystems Engineering, Hamburg University, 21073 Hamburg, Germany
| | - Sandra Fuest
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (F.N.); (S.F.)
| | - Sophie Charlotte Rhode
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Ewa Klara Stuermer
- Department for Vascular Medicine, Translational Wound Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
5
|
Wang SL, Li XW, Xu W, Yu QY, Fang SM. Advances of regenerated and functionalized silk biomaterials and application in skin wound healing. Int J Biol Macromol 2024; 254:128024. [PMID: 37972830 DOI: 10.1016/j.ijbiomac.2023.128024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
The cocoon silk of silkworms (Bombyx mori) has multiple potential applications in biomedicine due to its good biocompatibility, mechanical properties, degradability, and plasticity. Numerous studies have confirmed that silk material dressings are more effective than traditional ones in the skin wound healing process. Silk material research has recently moved toward functionalized biomaterials and achieved remarkable results. Herein, we summarize the recent advances in functionalized silk materials and their efficacy in skin wound healing. In particular, transgenic technology has realized the specific expression of human growth factors in the silk glands of the silkworms, which lays the foundation for fabricating novel and low-cost functionalized materials. Without a green and safe preparation process, the best raw silk materials cannot be made into medically safe products. Therefore, we provide an overview of green and gentle approaches for silk degumming and silk sericin (SS) extraction. Moreover, we summarize and discuss the processing methods of silk fibroin (SF) and SS materials and their potential applications, such as burns, diabetic wounds, and other wounds. This review aims to enhance our understanding of new advances and directions in silk materials and guide future biomedical research.
Collapse
Affiliation(s)
- Sheng-Lan Wang
- College of Life Science, China West Normal University, Nanchong 637002, Sichuan, China
| | - Xiao-Wei Li
- School of Life Sciences, Chongqing University, Chongqing 400044, PR China
| | - Wei Xu
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine, No. 40 Daomenkou St., District Yuzhong, Chongqing 400011, China
| | - Quan-You Yu
- School of Life Sciences, Chongqing University, Chongqing 400044, PR China
| | - Shou-Min Fang
- College of Life Science, China West Normal University, Nanchong 637002, Sichuan, China.
| |
Collapse
|
6
|
Sha Q, Wang Y, Zhu Z, Wang H, Qiu H, Niu W, Li X, Qian J. A hyaluronic acid/silk fibroin/poly-dopamine-coated biomimetic hydrogel scaffold with incorporated neurotrophin-3 for spinal cord injury repair. Acta Biomater 2023:S1742-7061(23)00309-4. [PMID: 37257575 DOI: 10.1016/j.actbio.2023.05.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Bio-factor stimulation is essential for axonal regeneration in the central nervous system. Thus, persistent and efficient factor delivery in the local microenvironment is an ideal strategy for spinal cord injury repair. We developed a biomimetic hydrogel scaffold to load biofactors in situ and release them in a controlled way as a promising therapeutic modality. Hyaluronic acid and silk fibroin were cross-linked as the basement of the scaffolds, and poly-dopamine coating was used to further increase the loading of factors and endow the hydrogel scaffolds with ideal physical and chemical properties and proper biocompatibility. Notably, neurotrophin-3 release from the hydrogel scaffolds was prolonged to 28 days. A spinal cord injury model was constructed for hydrogel scaffold transplantation. After eight weeks, significant NF200-positive nerve fibers were observed extending across the glial scar to the center of the injured area. Due to the release of neurotrophin-3, spinal cord regeneration was enhanced, and the cavity area of the injury graft site and inflammation associated with CD68 positive cells were reduced, which led to a significant improvement in hind limb motor function. The results show that the hyaluronic acid/silk fibroin/poly-dopamine-coated biomimetic hydrogel scaffold achieved locally slow release of neurotrophin-3, thus facilitating the regeneration of injured spinal cord. STATEMENT OF SIGNIFICANCE: Hydrogels have received great attention in spinal cord regeneration. Current research has focused on more efficient and controlled release of bio-factors. Here, we adopted a mussel-inspired strategy to functionalize the hyaluronic acid/silk fibroin hydrogel scaffold to increase the load of neurotrophin-3 and extend the release time. The hydrogel scaffolds have ideal physiochemical properties, proper release rate, and biocompatibility. Owing to the continuous neurotrophin-3 release from implanted scaffolds, cavity formation is reduced, inflammation alleviated, and spinal cord regeneration enhanced, indicating great potential for bio-factor delivery in soft tissue regeneration applications.
Collapse
Affiliation(s)
- Qi Sha
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yankai Wang
- Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, China
| | - Zhi Zhu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Hu Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Hua Qiu
- Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, China
| | - Weirui Niu
- Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, China
| | - Xiangyang Li
- Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, China.
| | - Jun Qian
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|
7
|
Mazurek Ł, Szudzik M, Rybka M, Konop M. Silk Fibroin Biomaterials and Their Beneficial Role in Skin Wound Healing. Biomolecules 2022; 12:biom12121852. [PMID: 36551280 PMCID: PMC9775069 DOI: 10.3390/biom12121852] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The skin, acting as the outer protection of the human body, is most vulnerable to injury. Wound healing can often be impaired, leading to chronic, hard-to-heal wounds. For this reason, searching for the most effective dressings that can significantly enhance the wound healing process is necessary. In this regard, silk fibroin, a protein derived from silk fibres that has excellent properties, is noteworthy. Silk fibroin is highly biocompatible and biodegradable. It can easily make various dressings, which can be loaded with additional substances to improve healing. Dressings based on silk fibroin have anti-inflammatory, pro-angiogenic properties and significantly accelerate skin wound healing, even compared to commercially available wound dressings. Animal studies confirm the beneficial influence of silk fibroin in wound healing. Clinical research focusing on fibroin dressings is also promising. These properties make silk fibroin a remarkable natural material for creating innovative, simple, and effective dressings for skin wound healing. In this review, we summarise the application of silk fibroin biomaterials as wound dressings in full-thickness, burn, and diabetic wounds in preclinical and clinical settings.
Collapse
|
8
|
Huang X, Zhu Z, Lu L, Jin R, Sun D, Luo X. Frozen bean curd-inspired Xenogeneic acellular dermal matrix with triple pretreatment approach of freeze-thaw, laser drilling and ADSCs pre-culture for promoting early vascularization and integration. Regen Biomater 2022; 9:rbac053. [PMID: 35974951 PMCID: PMC9375572 DOI: 10.1093/rb/rbac053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/03/2022] [Accepted: 07/20/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Xenogeneic acellular dermal matrix (ADM) is widely used in clinical practice given its good biocompatibility and biomechanical properties. Yet, its dense structure remains a hindrance. Incorporation of laser drilling and pre-culture with Adipose-derived stem cells (ADSCs) have been attempted to promote early vascularization and integration, but the results were not ideal. Inspired by the manufacturing procedure of frozen bean curd, we proposed a freeze-thaw treatment to enhance the porosity of ADM. We found that the ADM treated with -80°C3R+-30°C3R had the largest disorder of stratified plane arrangement (deviation angle 28.6%) and the largest porosity (96%), making it an optimal approach. Human umbilical vein endothelial cells on freeze-thaw treated ADM demonstrated increased expression in Tie-2 and CD105 genes, proliferation, and tube formation in vitro compared with those on ADM. Combining freeze-thaw with laser drilling and pre-culture with ADSCs, such tri-treatment improved the gene expression of pro-angiogenic factors including IGF-1, EGF, and VEGF, promoted tube formation, increased cell infiltration, and accelerated vascularization soon after implantation. Overall, freeze-thaw is an effective method for optimizing the internal structure of ADM, and tri-treatments may yield clinical significance by promoting early cell infiltration, vascularization, and integration with surrounding tissues.
Collapse
Affiliation(s)
- Xing Huang
- Shanghai Jiao Tong University School of Medicine Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, , Shanghai, PR China
- Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, PR China
| | - Zhu Zhu
- Shanghai Jiao Tong University School of Medicine Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, , Shanghai, PR China
- Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, PR China
| | - Lin Lu
- Shanghai Jiao Tong University School of Medicine Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, , Shanghai, PR China
| | - Rui Jin
- Shanghai Jiao Tong University School of Medicine Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, , Shanghai, PR China
| | - Di Sun
- Shanghai Jiao Tong University School of Medicine Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, , Shanghai, PR China
| | - Xusong Luo
- Shanghai Jiao Tong University School of Medicine Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, , Shanghai, PR China
| |
Collapse
|
9
|
Ai X, Lu S, Xie A, Zhang H, Zhao J, Wang T, Chen G, Lu S, Xing T. Fabrication of flexible conductive silk fibroin/polythiophene membrane and its properties. E-POLYMERS 2021. [DOI: 10.1515/epoly-2022-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Silk fibroin (SF) film is an insulating material, which can be combined with polythiophene derivatives with electrical conductivity to obtain a flexible conductive material. In this work, poly(3,4-ethylenedioxythiophene) (PEDOT) was used to graft a silk protein film. The hydroxyl radical is formed by activation and oxidation of the silk protein film polymerized with the PEDOT radical formed by oxidation of 3,4-ethylenedioxythiophene to obtain a conductive silk film. The SF/PEDOT film, when tested, showed excellent electrical conductivity with resistance up to 63 Ω·cm−2, good flexibility, mechanical properties, fastness, and biocompatibility.
Collapse
Affiliation(s)
- Xin Ai
- National Engineering Laboratory for Modern Silk, Department of Light Chemistry Engineering, College of Textile and Clothing Engineering, Soochow University , Suzhou 215123 , China
| | - Shuqing Lu
- National Engineering Laboratory for Modern Silk, Department of Light Chemistry Engineering, College of Textile and Clothing Engineering, Soochow University , Suzhou 215123 , China
| | - Ailing Xie
- National Engineering Laboratory for Modern Silk, Department of Light Chemistry Engineering, College of Textile and Clothing Engineering, Soochow University , Suzhou 215123 , China
| | - Haoran Zhang
- National Engineering Laboratory for Modern Silk, Department of Light Chemistry Engineering, College of Textile and Clothing Engineering, Soochow University , Suzhou 215123 , China
| | - Juntao Zhao
- National Engineering Laboratory for Modern Silk, Department of Light Chemistry Engineering, College of Textile and Clothing Engineering, Soochow University , Suzhou 215123 , China
| | - Tianjiao Wang
- National Engineering Laboratory for Modern Silk, Department of Light Chemistry Engineering, College of Textile and Clothing Engineering, Soochow University , Suzhou 215123 , China
| | - Guoqiang Chen
- National Engineering Laboratory for Modern Silk, Department of Light Chemistry Engineering, College of Textile and Clothing Engineering, Soochow University , Suzhou 215123 , China
| | - Shenzhou Lu
- National Engineering Laboratory for Modern Silk, Department of Light Chemistry Engineering, College of Textile and Clothing Engineering, Soochow University , Suzhou 215123 , China
| | - Tieling Xing
- National Engineering Laboratory for Modern Silk, Department of Light Chemistry Engineering, College of Textile and Clothing Engineering, Soochow University , Suzhou 215123 , China
| |
Collapse
|