1
|
Wang C, Zhang G, Jiang Y, Bao G, Li C. UBE2S, downregulated by miR-152-3p, facilitates prostate cancer progression through the PTEN-mediated AKT/mTOR pathway. Hum Mol Genet 2025; 34:523-532. [PMID: 39807632 DOI: 10.1093/hmg/ddaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
OBJECTIVES In recent years, the incidence and mortality rates of prostate cancer (PCa) have still not been significantly reduced and the mechanisms of tumor onset and progression are still not fully understood. The pathogenic mechanisms and upstream regulation of UBE2S expression in prostate cancer have not been elucidated. METHODS Here, we performed bioinformatic analysis of public databases to reveal the expression of UBE2S in PCa and its association with Gleason score, tumor staging, biochemical recurrence, and survival. Subsequently, the effect of UBE2S on the proliferation and invasive capacity of PCa cells was explored. Next, miR-152-3p was identified to bind to the 3'-UTR of UBE2S mRNA and down-regulated in PCa through luciferase reporter assays. Dual immunofluorescence assay and co-immunoprecipitation assays were performed to verify the regulatory role of UBE2S on PTEN. Finally, the molecular mechanism of UBE2S regulation of PCa progression was further confirmed by rescue experiments and in vivo nude mouse subcutaneous transplantation tumor experiments. RESULTS UBE2S expression was upregulated in PCa and correlated with patient Gleason score, TNM stage, biochemical recurrence, and disease-free survival. miR-152-3p regulated UBE2S expression in PCa by binding to the UBE2S mRNA 3'-UTR. Mechanistically, UBE2S combines with PTEN and ubiquitinates it, leading to PTEN degradation and ultimately promoting PCa progression via the AKT/mTOR signaling pathway. CONCLUSIONS UBE2S, down-regulated by miR-152-3p, plays an important role in the onset and progression of PCa through the PTEN-mediated Akt/mTOR pathway and may become a new diagnostic marker and therapeutic target for PCa.
Collapse
Affiliation(s)
- Chunhui Wang
- Departments of Urology, Affiliated Hospital of Chifeng University, No. 42 Wangfu Street, 024000, Chifeng, China
- Urology Research Center, Chifeng University, No. 42 Wangfu Street, 024000, Chifeng, China
| | - Gang Zhang
- Departments of Urology, Yan Tai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Binzhou, China
| | - Ying Jiang
- Medical Reproductive Center, Affiliated Hospital of Chifeng University, No. 42 Wangfu Street, 024000, Chifeng, China
| | - Guochang Bao
- Departments of Urology, Affiliated Hospital of Chifeng University, No. 42 Wangfu Street, 024000, Chifeng, China
- Urology Research Center, Chifeng University, No. 42 Wangfu Street, 024000, Chifeng, China
| | - Chunsheng Li
- Departments of Urology, Affiliated Hospital of Chifeng University, No. 42 Wangfu Street, 024000, Chifeng, China
- Urology Research Center, Chifeng University, No. 42 Wangfu Street, 024000, Chifeng, China
| |
Collapse
|
2
|
Zhang M, Wang J, Zhang Z, Guo Y, Lou X, Zhang L. Diverse roles of UBE2S in cancer and therapy resistance: Biological functions and mechanisms. Heliyon 2024; 10:e24465. [PMID: 38312603 PMCID: PMC10834827 DOI: 10.1016/j.heliyon.2024.e24465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
The Ubiquitin Conjugating Enzyme E2 S (UBE2S), was initially identified as a crucial member in controlling substrate ubiquitination during the late promotion of the complex's function. In recent years, UBE2S has emerged as a significant epigenetic modification in various diseases, including myocardial ischemia, viral hepatitis, and notably, cancer. Mounting evidence suggests that UBE2S plays a pivotal role in several human malignancies including breast cancer, lung cancer, hepatocellular carcinoma and etc. However, a comprehensive review of UBE2S in human tumor research remains absent. Therefore, this paper aims to fill this gap. This review provides a comprehensive analysis of the structural characteristics of UBE2S and its potential utility as a biomarker in diverse cancer types. Additionally, the role of UBE2S in conferring resistance to tumor treatment is examined. The findings suggest that UBE2S holds promise as a diagnostic and therapeutic target in multiple malignancies, thereby offering novel avenues for cancer therapy.
Collapse
Affiliation(s)
- Mengjun Zhang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, 7 Rehabilitation Front Street, Zhengzhou 450052, China
| | - Jialin Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, 100000, China
| | - Zidi Zhang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, 7 Rehabilitation Front Street, Zhengzhou 450052, China
| | - Yan Guo
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Street, Zhengzhou 450003, China
| | - Xueling Lou
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, 7 Rehabilitation Front Street, Zhengzhou 450052, China
| | - Lindong Zhang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, 7 Rehabilitation Front Street, Zhengzhou 450052, China
| |
Collapse
|
3
|
Wang X, Zhang Y, Wu Y, Cheng H, Wang X. The role of E3 ubiquitin ligases and deubiquitinases in bladder cancer development and immunotherapy. Front Immunol 2023; 14:1202633. [PMID: 37215134 PMCID: PMC10196180 DOI: 10.3389/fimmu.2023.1202633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Bladder cancer is one of the common malignant urothelial tumors. Post-translational modification (PTMs), including ubiquitination, acetylation, methylation, and phosphorylation, have been revealed to participate in bladder cancer initiation and progression. Ubiquitination is the common PTM, which is conducted by E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin-protein ligase. E3 ubiquitin ligases play a key role in bladder oncogenesis and progression and drug resistance in bladder cancer. Therefore, in this review, we summarize current knowledge regarding the functions of E3 ubiquitin ligases in bladder cancer development. Moreover, we provide the evidence of E3 ubiquitin ligases in regulation of immunotherapy in bladder cancer. Furthermore, we mention the multiple compounds that target E3 ubiquitin ligases to improve the therapy efficacy of bladder cancer. We hope our review can stimulate researchers and clinicians to investigate whether and how targeting E3 ubiquitin ligases acts a novel strategy for bladder cancer therapy.
Collapse
|
4
|
Xie LY, Huang HY, Hao YL, Yu M, Zhang W, Wei E, Gao C, Wang C, Zeng L. Development and validation of a tumor immune cell infiltration-related gene signature for recurrence prediction by weighted gene co-expression network analysis in prostate cancer. Front Genet 2023; 14:1067172. [PMID: 37007952 PMCID: PMC10061146 DOI: 10.3389/fgene.2023.1067172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction: Prostate cancer (PCa) is the second most common malignancy in men. Despite multidisciplinary treatments, patients with PCa continue to experience poor prognoses and high rates of tumor recurrence. Recent studies have shown that tumor-infiltrating immune cells (TIICs) are associated with PCa tumorigenesis.Methods: The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets were used to derive multi-omics data for prostate adenocarcinoma (PRAD) samples. The CIBERSORT algorithm was used to calculate the landscape of TIICs. Weighted gene co-expression network analysis (WGCNA) was performed to determine the candidate module most significantly associated with TIICs. LASSO Cox regression was applied to screen a minimal set of genes and construct a TIIC-related prognostic gene signature for PCa. Then, 78 PCa samples with CIBERSORT output p-values of less than 0.05 were selected for analysis. WGCNA identified 13 modules, and the MEblue module with the most significant enrichment result was selected. A total of 1143 candidate genes were cross-examined between the MEblue module and active dendritic cell-related genes.Results: According to LASSO Cox regression analysis, a risk model was constructed with six genes (STX4, UBE2S, EMC6, EMD, NUCB1 and GCAT), which exhibited strong correlations with clinicopathological variables, tumor microenvironment context, antitumor therapies, and tumor mutation burden (TMB) in TCGA-PRAD. Further validation showed that the UBE2S had the highest expression level among the six genes in five different PCa cell lines.Discussion: In conclusion, our risk-score model contributes to better predicting PCa patient prognosis and understanding the underlying mechanisms of immune responses and antitumor therapies in PCa.
Collapse
Affiliation(s)
- Lin-Ying Xie
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jillin University, Changchun, Jilin, China
| | - Han-Ying Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yu-Lei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Miaomiao Yu
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jillin University, Changchun, Jilin, China
| | - Wenju Zhang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jillin University, Changchun, Jilin, China
| | - Enwei Wei
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jillin University, Changchun, Jilin, China
| | - Chunfeng Gao
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jillin University, Changchun, Jilin, China
| | - Chang Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Chang Wang, ; Lei Zeng,
| | - Lei Zeng
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jillin University, Changchun, Jilin, China
- *Correspondence: Chang Wang, ; Lei Zeng,
| |
Collapse
|
5
|
Zhao R, Yu Z, Mao X, Zheng Y, Wang Y, Zhou Y. Knockout of UBE2S inhibits the proliferation of gastric cancer cells and induces apoptosis by FAS-mediated death receptor pathway. Exp Cell Res 2022; 419:113293. [PMID: 35863455 DOI: 10.1016/j.yexcr.2022.113293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/26/2022] [Accepted: 07/14/2022] [Indexed: 11/04/2022]
Abstract
Ubiquitin binding enzyme E2S (UBE2S) is a member of ubiquitin binding enzyme family involved in a variety of biological functions, including cell cycle regulation, apoptosis, and regulation of the ubiquitination of proteins, which are closely correlated with the development of various tumors. However, its role in gastric cancer (GC) remains unknown. In this study, we found that UBE2S was upregulated in GC tissues and cells. Further, its high expression positively correlated with the tumor stage and indicated a poor prognosis. Knockout of UBE2S by CRISPR/Cas9-mediated strategy suppressed the growth of GC in vitro and in vivo. Moreover, RNA-Seq-based transcriptome analysis and tandem mass tag (TMT)-based quantitative proteomics analysis was performed for exploring the underlying mechanism. The multi-omics and verification results showed that UBE2S knockout-induced apoptosis and proliferation inhibition of GC cells was related to upregulation of FAS and the activation of the FAS-mediated apoptotic pathway. Moreover, a negative correlation between UBE2S and FAS expression was observed in GC tissue samples. Finally, the ubiquitination assay confirmed that knockout of UBE2S might activate endogenous FAS by inhibiting ubiquitination and degradation of p53 in GC cells. Collectively, UBE2S is expected to be a novel prognostic biomarker and potential therapeutic target for GC.
Collapse
Affiliation(s)
- Rongrong Zhao
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China; Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, Gansu, China; Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China
| | - Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiaorong Mao
- Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China; Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China; Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China; Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
6
|
Zhang M, Liu Y, Yin Y, Sun Z, Wang Y, Zhang Z, Li F, Chen X. UBE2S promotes the development of ovarian cancer by promoting PI3K/AKT/mTOR signaling pathway to regulate cell cycle and apoptosis. Mol Med 2022; 28:62. [PMID: 35658829 PMCID: PMC9166599 DOI: 10.1186/s10020-022-00489-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background Ovarian cancer is one of the important factors that seriously threaten women's health and its morbidity and mortality ranks eighth among female cancers in the world. It is critical to identify potential and promising biomarkers for prognostic evaluation and molecular therapy of OV. Ubiquitin-conjugating enzyme E2S (UBE2S), a potential oncogene, regulates the malignant progression of various tumors; however, its role in OV is still unclear. Methods The expression and prognostic significance of UBE2S at the pan-cancer level were investigated through high-throughput gene expression analysis and clinical prognostic data from TCGA, GEPIA, and GEO databases. 181 patients with OV were included in this study. Cell culture and cell transfection were performed on OV cell lines (SKOV3 and A2780) and a normal ovarian cell line (IOSE80). The expression level and prognostic significance of UBE2S in OV were verified by western blot, immunohistochemistry, and Kaplan–Meier survival analysis. Through cell transfection, CCK-8, Ki-67 immunofluorescence, wound healing, Transwell, clonogenic, and flow cytometry assays, the effect and detailed mechanism of UBE2S knockdown on the malignant biological behavior of OV cells were explored. Results UBE2S exhibited abnormally high expression at the pan-cancer level. The results of RT-qPCR and Western blotting indicated that UBE2S was significantly overexpressed in ovarian cancer cell lines compared with normal cell lines (P < 0.05). Kaplan–Meier survival analysis and Immunohistochemistry indicated that overexpression of UBE2S was related to poor prognosis of OV (HR > 1, P < 0.05). Results of in vitro experiments indicated that UBE2S gene knockdown might inhibit the proliferation, invasion, and prognosis of OV cells by inhibiting the PI3K/AKT/mTOR signaling pathway, thereby blocking the cell cycle and promoting apoptosis (P < 0.05). Conclusion UBE2S is a potential oncogene strongly associated with a poor prognosis of OV patients. Knockdown of UBE2S could block the cell cycle and promote apoptosis by inhibiting the PI3K/AKT/mTOR pathway and ultimately inhibit the proliferation, migration and prognosis of ovarian cancer, which suggested that UBE2S might be used for molecular therapy and prognostic evaluation of ovarian cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00489-2.
Collapse
Affiliation(s)
- Mengjun Zhang
- Department of Gynecology, Harbin Medical University Cancer Hospital, 6 Baojian Rd, Harbin, 150040, China
| | - Yuan Liu
- Department of Gynecology, Harbin Medical University Cancer Hospital, 6 Baojian Rd, Harbin, 150040, China
| | - Yue Yin
- Department of Gynecology, Harbin Medical University Cancer Hospital, 6 Baojian Rd, Harbin, 150040, China
| | - Zhenxing Sun
- Department of Gynecology, Harbin Medical University Cancer Hospital, 6 Baojian Rd, Harbin, 150040, China
| | - Yan Wang
- Department of Gynecology, Harbin Medical University Cancer Hospital, 6 Baojian Rd, Harbin, 150040, China
| | - Zexue Zhang
- Department of Gynecology, Harbin Medical University Cancer Hospital, 6 Baojian Rd, Harbin, 150040, China
| | - Fei Li
- Department of Gynecology, Harbin Medical University Cancer Hospital, 6 Baojian Rd, Harbin, 150040, China
| | - Xiuwei Chen
- Department of Gynecology, Harbin Medical University Cancer Hospital, 6 Baojian Rd, Harbin, 150040, China.
| |
Collapse
|
7
|
Zhang CY, Yang M. Functions of three ubiquitin-conjugating enzyme 2 genes in hepatocellular carcinoma diagnosis and prognosis. World J Hepatol 2022; 14:956-971. [PMID: 35721293 PMCID: PMC9157709 DOI: 10.4254/wjh.v14.i5.956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/01/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver cancer ranks the third cause of cancer-related death worldwide. The most common type of liver cancer is hepatocellular carcinoma (HCC). The survival time for HCC patients is very limited by years due to the lack of efficient treatment, failure of early diagnosis, and poor prognosis. Ubiquitination plays an essential role in the biochemical processes of a variety of cellular functions. AIM To investigate three ubiquitination-associated genes in HCC. METHODS Herein, the expression levels of ubiquitin-conjugating enzymes 2 (UBE2) including UBE2C, UBE2T, and UBE2S in tumor samples of HCC patients and non-tumor controls at the Cancer Genome Atlas (TCGA) database, was comprehensively analyzed. The relationship of UBE2 gene expression level with cancer stage, prognostic outcome, and TP53 mutant status was studied. RESULTS Our results showed that UBE2C, UBE2T, and UBE2S genes were overexpressed in HCC samples compared to non-tumor tissues. Dependent on the cancer progression stage, three UBE2 genes showed higher expression in tumor tissues at all four stages compared to non-tumor control samples. Furthermore, a significantly higher expression of these genes was found in stage 2 and stage 3 cancers compared to stage 1 cancer. Additionally, overexpression of those genes was negatively associated with prognostic outcome and overall survival time. Patients with TP53 mutation showed a higher expression level of three UBE2 genes, indicating an association between UBE2 expression with p53 function. CONCLUSION In summary, this study shed light on the potential roles of UBE2C, UBE2T, UBE2S on diagnostic and prognostic biomarkers for HCC. Moreover, based on our findings, it is appealing to further explore the correlation of those genes with TP53 mutation in HCC and the related mechanisms.
Collapse
Affiliation(s)
- Chun-Ye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, United States
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
8
|
Functions of three ubiquitin-conjugating enzyme 2 genes in hepatocellular carcinoma diagnosis and prognosis. World J Hepatol 2022. [DOI: 10.4254/wjh.v14.i5.957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
9
|
A Pan-Cancer Analysis of UBE2S in Tumorigenesis, Prognosis, Pathway, Immune Infiltration and Evasion, and Therapy Response from an Immune-Oncology Perspective. JOURNAL OF ONCOLOGY 2022; 2022:3982539. [PMID: 35578600 PMCID: PMC9107357 DOI: 10.1155/2022/3982539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 11/18/2022]
Abstract
Background Ubiquitin conjugating enzyme E2S (UBE2S), a member of the ubiquitin-conjugating enzyme family, is known to play a pivotal role in tumorigenesis and progression in some tumor types. However, whether UBE2S plays an irreplaceable role in the immune-oncology context of tumorigenesis, prognosis, pathogenesis, immune regulation, and therapeutic response through certain common molecular mechanisms remains to be defined. The present pan-cancer study was intended to decipher the landscape of UBE2S in pathologic, immunological, and therapeutic aspects across various cancers. Methods Data used for UBE2S analysis were obtained from TCGA database. The pan-cancer analysis was mainly focused on the expression patterns, prognostic values, mutation landscapes, biological pathways, tumor microenvironment remodeling, and therapeutic resistance of UBE2S using multiple databases including cBioPortal, Cancer Cell Line Encyclopedia (CCLE) database, Tumor Immune Estimation Resource (TIMER), and Gene Expression Profiling Interactive Analysis (GEPIA). External experimental validation was conducted to delineate the association of UBE2S with tumor phenotypes through assays of proliferation, colony formation, and migration. Data processing, statistical analysis, and plotting were performed using R software and GraphPad Prism software. Results UBE2S was aberrantly expressed in almost all human cancers, and elevated UBE2S expression was unfavorably associated with the clinical pathological stage and prognosis. DNA methylation and RNA modification were significantly correlated with the UBE2S expression level. The results of enrichment analysis revealed that UBE2S positively regulated MYC, G2M cell cycle, and DNA repair pathways and negatively regulated adipogenesis, fatty acid metabolism, and heme metabolism. In addition, UBE2S exhibited a significantly positive correlation with myeloid-derived suppressor cell MDSC and Th2 subsets in almost all tumors analyzed. UBE2S could confer immune evasion via coexpressed immunoinhibitors and T cell exhaustion. Notably, a higher UBE2S expression indicated a higher level of stemness, TMB, MSI, and MMR deficiency and DNA methyltransferases, as well as chemotherapeutic resistance in various cancers. Notably, in vitro functional validation showed that UBE2S knockdown attenuated the phenotypes of proliferation, clonogenicity, and migration in hepatocellular carcinoma cells. Conclusions Our study provided meaningful clues to support UBE2S as an immune-oncogenic molecule and shed light on potential applications of UBE2S in cancer detection, prognostic prediction, and therapeutic response assessment.
Collapse
|